Summary: Carboxylated multiwalled carbon nanotubes (MWNTs) were assembled with poly(allylamine hydrochloride) (PAH) onto decomposable colloidal particles, to subsequently yield hollow microcapsules after core removal. A sandwich structure with MWNTs layer embedded in poly(styrenesulfonate sodium salt) (PSS)/PAH multilayers was designed and constructed on melamine formaldehyde particles. Transmission electron microscopy and confocal microscopy revealed the hollow structure and good dispersity of the resultant microcapsules. The MWNTs were uniformly distributed on the capsule walls.
In order to improve the quality of pulse laser welding on magnesium alloy, the effect of pulse overlap rate on the microstructure and mechanical properties of the welds is studied. A Nd:YAG pulsed laser welding machine is used to carry the butt welding experiments on AZ31 magnesium alloy (1 mm), and the pulse overlap rate (10%, 30%, 50%, 70%, 90%) is varied by adjusting the welding velocity. The experimental results show that with the increases of pulse overlap rate, the sensitivity of the solidification cracks and pores decreases. The grain size of the columnar grains at the fusion boundary (FB) and the equiaxed grains in the center of the welds increases and then decreases and reach the maximum value of 114.72 ± 3.06 μm and 74.08 ± 5.87 μm, respectively, when the overlap rate is 70%. The percentage of the ductile fracture in the fracture of tensile specimens is proportional to the pulse overlap rate. With the increases of the pulse overlap rate, the tensile strength and maximum force show a trend of decreasing first and then increasing, and both reach the maximum value of 94.583 MPa and 1.135 kN when the overlap rate is 90%. Besides, the microhardnesses of the welds decrease first and then increase, which the maximum value is 86 HV0.2. In summary, the welds with better surface morphology can be obtained at the pulse overlap rate of 70%, while the mechanical properties of the welds are better when the overlap rate is 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.