To evaluate the physical and rheological properties of rejuvenated styrene-butadiene-styrene-modified asphalt (SBSMA) binders designed for rapid in-place pavement recycling, an aged SBSMA binder was rejuvenated with three rejuvenators (i.e., Types I, II, and III) in different dosages. The physical properties of rejuvenated SBSMA were obtained to determine the optimal type and dosage of rejuvenators for the first and second rejuvenation. Performance grade (PG) tests, multiple stress creep recovery (MSCR) tests, and linear amplitude sweep (LAS) tests were conducted to measure the rheological properties using the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The results exhibited that the rejuvenators could soften the multiple aged binder and enhance its high- and low-temperature performance. The rejuvenation effect of rejuvenator Type I with the optimal dosage of 6∼8% was the most appropriate for the first rejuvenation. The optimal dosage of the second rejuvenation was 10∼12%. The addition of rejuvenators decreased the rutting factor G∗/sin δ, creep stiffness (S), delta Tc (ΔTc) parameter, recovery response (R), and yield stress of rejuvenated SBSMA. On the other hand, an increase in the rate of relaxation (m-value), nonrecoverable creep compliance (Jnr), and yield strain of rejuvenated SBSMA was recorded. Overall, the study findings indicated an improvement in the elastic properties of rejuvenated SBSMA, which contributes to improving the rutting, thermal, and fatigue cracking resistance of asphalt binder and ultimately the response of asphalt pavements.
To explore the applicability of steel slag porous asphalt mixture, the interaction capability and microscopic interfacial mechanism between asphalt-binder and steel slag aggregate-filler were investigated in this laboratory study. These objectives were accomplished by comparing and analyzing the differences between steel slag and basalt aggregates in interacting with the asphalt-binder. The study methodology involved preparing basalt and steel slag asphalt mortar to evaluate the penetration, ductility, softening point, toughness, and tenacity. Thereafter, the interaction capability between the asphalt-binder and aggregates was characterized using the interaction parameters of the asphalt mortar obtained from dynamic shear rheometer (DSR) testing. For studying the functional groups and chemical bonding of the asphalt mortar, the Fourier Transform infrared (FTIR) spectrometer was used, whilst the interfacial bonding between the asphalt-binder and aggregates was analyzed using the scanning electron microscope (SEM). The corresponding test results indicated that the physical and rheological properties of the two asphalt mortars were similar. However, whilst the FTIR analysis indicated domination through chemical reactions, the interaction capability and interfacial bonding between the asphalt-binder and steel slag aggregates exhibited superiority over that between the asphalt-binder and basalt aggregates, with pronounced adsorption peaks appearing in the steel slag asphalt mortar spectrum. On the other hand, the SEM test revealed that, compared with the basalt, the micro-interfacial phases between the steel slag and asphalt-binder were more continuous and uniform, which could potentially enhance the interfacial bond strength between the asphalt-binder and aggregates (filler).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.