The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies.
Lipotoxicity induced by saturated fatty acids (SFAs) plays a central role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD); however, the exact mechanism(s) remain to be fully elucidated. SIRT3 is an NAD+-dependent deacetylase primarily located inside mitochondria. In this study, we demonstrated that a SFAs-rich high-fat diet (HFD) was more detrimental to the liver than an isocaloric unsaturated FAs-rich HFD. Unexpectedly, SIRT3 expression/activity were significantly elevated in the livers of mice exposed to the SFAs-rich HFD. Using cultured HepG2 and AML-12 hepatocytes, we demonstrated that unlike monounsaturated FAs, SFAs upregulates SIRT3 expression/activity. SIRT3 overexpression renders both the liver and hepatocytes susceptible to palmitate-induced cell death, which can be alleviated by SIRT3 siRNA transfection. In contrast, SIRT3 suppression protects hepatocytes from palmitate cytotoxicity. Further studies revealed that SIRT3 acts as a negative regulator of autophagy, whereby enhancing the susceptibility of hepatocytes to SFAs-induced cytotoxicity. Mechanistic investigations elucidate that SIRT3 overexpression causes manganese superoxide dismutase (MnSOD) deacetylation/activation, which depleted intracellular superoxide contents, leading to AMP-activated protein kinase (AMPK) inhibition and mTORC1 activation, resulting in autophagy suppression. In contrast, SIRT3 siRNA gene silencing enhances autophagy flux. The similar result was observed in the liver tissue from SIRT3 knockout mice.
Conclusion
our data identified SIRT3 to be a novel negative regulator of autophagy, whose activation by SFAs contributes to lipotoxicity in hepatocytes and suggest that restraining SIRT3 overactivation can be a potential therapeutic choice for the treatment of NAFLD as well as other metabolic disorders, with lipotoxicity being the principal pathomechanism.
Chronic alcohol consumption leads to hypertriglyceridemia, which is positively associated with alcoholic liver disease (ALD). However, whether and how it contributes to the development of fatty liver and liver injury are largely unknown. In this study, we demonstrate that chronic alcohol exposure differently regulates the expression of very low-density lipoprotein receptor (VLDLR) in adipose tissue and the liver. Whereas adipose tissue VLDLR is significantly downregulated, its hepatic expression is dramatically increased after chronic alcohol feeding. While HepG2 cells stably overexpressing VLDLR manifests increased intracellular triglyceride accumulation, VLDLR-deficient mice are protective against fatty liver and liver injury after chronic alcohol exposure. Mechanistic investigations using both in vitro and in vivo systems reveal that oxidative stress-induced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation plays a critical role in alcohol-induced VLDLR upregulation in hepatocytes, but not in adipocytes. Oxidative stress enhances VLDLR gene expression and protein abundance in primary hepatocytes, concomitant with the Nrf2 activation. Conversely, Nrf2 gene silencing abrogates oxidative stress-induced VLDLR upregulation in the liver, but not in adipose tissue. In mice, alcohol exposure induces hepatic oxidative stress and Nrf2 activation. Supplementation of N-acetylcysteine alleviates fatty liver and liver injury induced by chronic alcohol exposure, which is associated with suppressed Nrf2 activation and attenuated VLDLR increase in the liver. Furthermore, in comparison to wild type counterparts, Nrf2 deficient mice demonstrate attenuated hepatic VLDLR expression increase in response to chronic alcohol exposure.
Conclusion
Chronic alcohol consumption differently alters VLDLR expression in adipose tissue and the liver. Oxidative stress-induced Nrf2 activation is mechanistically involved in VLDLR overexpression in hepatocytes in response to chronic alcohol consumption. Hepatic VLDLR overexpression plays an important role in the pathogenesis of ALD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.