Citrus reticulata Blanco cv. Shiyue Ju, which produces one of China's most popular tropical fruits, is widely planted throughout southern China. In 2008, a new citrus disease was found in Zhaoqing City in Guangdong Province on about 20,000 ha. Yield losses averaged 15% on a wide range of different aged trees of C. reticulata cv. Shiyue Ju. No yield losses were observed on C. reticulata cv. Gong gan. Symptoms first appeared on young leaves as leaf lesions, which were reddish-brown, elliptical, and 2 to 5 mm in diameter. After several weeks, 20 to 70% of leaves dropped and 10 to 50% of fruits on the trees showed brown spots (5 to 40 mm in diameter). Leaves and fruit peels adjacent to and including lesions from different trees were surface disinfested with 1% sodium hypochlorite for 1 min and rinsed three times in sterile water. Then the tissues were plated on potato dextrose agar (PDA) in alternating light and dark at 28°C for 3 days. Twenty-three similar isolates of a fast-growing fungus were recovered from all samples. For identification, single-spore cultures were grown on potato dextrose agar (PDA) at 28°C. Initially, the colonies were white, but after 5 days, they became pale gray with concentric zones and greenish black beneath. No setae, acervuli, or ascocarp were observed in the PDA culture. Conidia formed in pink conidial masses, were hyaline, fusiform, straight, obtuse at the ends, sometimes slightly curved, and 14 to 20 × 4.5 to 6 μm (x¯ = 16.2 ± 1.5 × 4.9 ± 0.5, n = 100). The cultural and morphological characteristics of these isolates matched the description of Colletotrichum siamense (3), but not that of C. gloeosporioides or C. acutatum, which cause anthracnose on citrus plants (1,2). The actin, β-tubulin, CHS I, CAL, GPDH, and ITS regions of four representative isolates (GenBank KC524462, KC524463, KC524464, KC524465, KC524466, and KC524467) were identical and with almost 100% identity to those of the type specimen of C. hymenocallidis isolate CSSN3 (C. hymenocallidis is synonymous with C. siamense) (4), except for two inconsistent nucleotide bases in the GPDH gene. Four potted plants of C. reticulata cv. Shiyue Ju were used for pathogenicity tests. On each plant, 10 randomly selected leaves and four 6-month-old fruits were wound-inoculated with 20 μl of sterile water or conidial suspensions (1 × 105 conidia per ml). Plants were then maintained at 90% relative humidity with a 12-h photoperiod at 28°C. Symptoms resembling those in the field were observed on three inoculated plants after 14 days. In another similar experiment without wounding, three of 20 inoculated plants exhibited the symptoms after 14 days. Controls remained healthy throughout this period. The tests were performed three times. C. siamense was reisolated from all diseased inoculated plants, and the culture and fungus characteristics were the same as the original isolate. Thus, C. siamense was determined to be the pathogen causing leaf drop and fruit spot on C. reticulata cv. Shiyue Ju. To our knowledge, this is the first report of leaf drop and fruit spot on C. reticulata cv. Shiyue Ju caused by C. siamense. References: (1) H. Benyahia et al. Plant Pathol. 52:798, 2003. (2) N. A. Peres et al. Plant Dis. 89:784, 2005. (3) H. Prihastuti, et al. Fungal Diversity 39:89, 2009. (4) B. Weir et al. Stud Mycol. 73:115, 2012.
Litchi (Litchi chinensis) pepper spot disease results in black spotting symptoms on litchi fruits. This disease was first observed on litchi cultivar Guiwei, in Guangzhou, China, in 2009, and then found widespread in other litchi‐growing regions of China. Colletotrichum isolates were consistently recovered from typical black spot lesions of diseased fruits with frequency ranging from 83% to 100%. Three representative Colletotrichum isolates from Maoming, Guangzhou and Shenzhen were selected for identification and pathogenicity testing in the field. Based on morphology and phylogenetic analysis using the ribosomal internal transcribed spacer region (ITS), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), calmodulin (CAL), actin (ACT), β‐tubulin (TUB2) and glutamine synthetase (GS) gene sequences, the three isolates were identified as C. siamense. In the pathogenicity experiments, typical symptoms appeared on the inoculated litchi fruits, including black spots and green patches around these black spots. These symptoms were consistent with the symptoms originally observed in the field. Colletotrichum siamense was successfully reisolated from the typical black spot lesions of the inoculated litchi fruits. To the authors' knowledge, this is the first report on characterization of C. siamense as the causal agent of litchi pepper spot disease in mainland China by successful inoculation on fruits under field conditions.
Idiopathic nonobstructive azoospermia (INOA) is one of the most severe forms of male infertility, yet its pathophysiology remains unclear. WT1 (Wilms' tumor 1) regulates the polarity of Sertoli cells, thereby playing a critical, indirect role in spermatogenesis. Here, we evaluated WT1 gene variation associates with INOA by assessing its promoter and coding regions in 200 patients diagnosed with INOA and 200 proven-fertile men. Three novel variants in the WT1 coding region were detected only in INOA patients, including two synonymous variants and one missense variant, p.Phe435Leu (p.F435L), which was predicted to be deleterious to protein function. The results of dual luciferase reporter showed that the WT1 p.F435L variant decreases transcription of COL4A1 and WNT4 promoters through a dominant-negative effect. Furthermore, chromatin immunoprecipitation assays revealed that COL4A1 and WNT4 promoter is directly bound by wild-type WT1 protein, but not the p.F435L WT1 variant. Thus, we identified a novel functional variant of WT1 functionally associated with INOA. Mol. Reprod. Dev. 84: 222-228, 2017. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.