Research on materials with pure organic room temperature phosphorescence (RTP) and their application as organic single-molecule white light emitters is a hot area and relies on the design of highly efficient pure organic RTP luminogens. Herein, a facile strategy of heavy-atom-participated anion–π+ interactions is proposed to construct RTP-active organic salt compounds (1,2,3,4-tetraphenyloxazoliums with different counterions). Those compounds with heavy-atom counterions (bromide and iodide ions) exhibit outstanding RTP due to the external heavy atom effect via anion–π+ interactions, evidently supported by the single-crystal X-ray diffraction analysis and theoretical calculation. Their single-molecule white light emission is realized by tuning the degree of crystallization. Such white light emission also performs well in polymer matrices and their use in 3D printing is demonstrated by white light lampshades.
Recent years have witnessed the significant role of anion-π interactions in many areas, which potentially brings the opportunity for the development of aggregation-induced emission (AIE) systems. Here, a new strategy that utilized anion-π interactions to block detrimental π-π stacking was first proposed to develop inherent-charged AIE systems. Two AIE-active luminogens, namely, 1,2,3,4-tetraphenyloxazolium (TPO-P) and 2,3,5-triphenyloxazolium (TriPO-PN), were successfully synthesized. Comprehensive techniques such as single-crystal analysis, theoretical calculation, and conductivity measurement were used to illustrate the effects of anion-π interactions on the AIE feature. Their analogues tetraphenylfuran (TPF) and 2,4,5-triphenyloxazole (TriPO-C) without anion-π interactions suffered from the aggregation-caused emission quenching in the aggregate state, demonstrating the important role of anion-π interactions in suppressing π-π stacking. TriPO-PN was biocompatible and could specifically target lysosome in fluorescence turn-on and wash-free manners. This suggested that it was a promising contrast agent for bioimaging.
Fibroblast growth factor 23 (FGF23) has been reported to induce left ventricular hypertrophy, but it remains unclear whether FGF23 plays a role in cardiac fibrosis. This study is attempted to investigate the role of FGF23 in post-infarct myocardial fibrosis in mice. We noted that myocardial and plasma FGF23 and FGF receptor 4 were increased in mice with heart failure as well as in cultured adult mouse cardiac fibroblasts (AMCFs) exposed to angiotensin II, phenylephrine, soluble fractalkine. Recombinant FGF23 protein increased active β-catenin , procollagen I and procollagen III expression in cultured AMCFs. Furthermore, intra-myocardial injection of adeno-associated virus-FGF23 in mice significantly increased left ventricular end-diastolic pressure and myocardial fibrosis, and markedly upregulated active β-catenin, transforming growth factor β (TGF-β), procollagen I and procollagen III in both myocardial infarction (MI) and ischemia/reperfusion (IR) mice, while β-catenin inhibitor or silencing of β-catenin antagonized the FGF23-promoted myocardial fibrosis in vitro and in vivo. These findings indicate that FGF23 promotes myocardial fibrosis and exacerbates diastolic dysfunction induced by MI or IR, which is associated with the upregulation of active β-catenin and TGF-β.
Ischemic stroke, producing a high mortality and morbidity rate, is a common clinical disease. Enhancing the prevention and control of ischemic stroke is particularly important. Baicalin and its aglycon baicalein are flavonoids extracted from Scutellaria baicalensis, an important traditional Chinese herb. In recent years, a growing body of evidences has shown that baicalin and baicalein could be effective in the treatment of cerebral ischemia. Pharmacokinetic studies have shown that baicalin could penetrate the blood-brain barrier and distribute in cerebral nuclei. Through a variety of in vitro and in vivo models of ischemic neuronal injury, numerous studies have demonstrated that baicalin and baicalein have salutary effect for neuroprotection. Especially, the studies on the pharmacological mechanism showed that baicalin and baicalein have several pharmacological activities, which include antioxidant, anti-apoptotic, anti-inflammatory and anti-excitotoxicity effects, protection of the mitochondria, promoting neuronal protective factors expression and adult neurogenesis effects and many more. This review focuses on the neuroprotective effects of baicalin and baicalein in ischemia or stroke-induced neuronal cell death. We aimed at collecting all important information regarding the neuroprotective effect and its pharmacological mechanism of baicalin and baicalein in various in vivo and in vitro experimental models of ischemic neuronal injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.