Background: The purpose of this study was to investigate the value of wavelet-transformed radiomic MRI in predicting the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) for patients with locally advanced breast cancer (LABC). Methods: Fifty-five female patients with LABC who underwent contrast-enhanced MRI (CE-MRI) examination prior to NAC were collected for the retrospective study. According to the pathological assessment after NAC, patient responses to NAC were categorized into pCR and non-pCR. Three groups of radiomic textures were calculated in the segmented lesions, including (1) volumetric textures, (2) peripheral textures, and (3) wavelet-transformed textures. Six models for the prediction of pCR were Model I: group (1), Model II: group (1) + (2), Model III: group (3), Model IV: group (1) + (3), Model V: group (2) + (3), and Model VI: group (1) + (2) + (3). The performance of predicting models was compared using the area under the receiver operating characteristic (ROC) curves (AUC). Results: The AUCs of the six models for the prediction of pCR were 0.816 ± 0.033 (Model I), 0.823 ± 0.020 (Model II), 0.888 ± 0.025 (Model III), 0.876 ± 0.015 (Model IV), 0.885 ± 0.030 (Model V), and 0.874 ± 0.019 (Model VI). The performance of four models with wavelet-transformed textures (Models III, IV, V, and VI) was significantly better than those without wavelet-transformed textures (Model I and II). In addition, the inclusion of volumetric textures or peripheral textures or both did not result in any improvements in performance. Conclusions: Wavelet-transformed textures outperformed volumetric and/or peripheral textures in the radiomic MRI prediction of pCR to NAC for patients with LABC, which can potentially serve as a surrogate biomarker for the prediction of the response of LABC to NAC.
This paper presents an efficient inverse kinematics (IK) approach which features fast computing performance for a PUMA560-structured robot manipulator. By properties of the orthogonal matrix and block matrix, the complex IK matrix equations are transformed into eight pure algebraic equations that contain the six unknown joint angle variables, which makes the solving compact without computing the reverses of the 4×4 homogeneous transformation matrices. Moreover, the appropriate combination of related equations ensures that the solutions are free of extraneous roots in the solving process, and the wrist singularity problem of the robot is also addressed. Finally, a case study is given to show the effectiveness of the proposed algorithm.
Background
Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent, which seriously endangers human health. The main method of acquiring brain tumors in the clinic is MRI. Segmentation of brain tumor regions from multi-modal MRI scan images is helpful for treatment inspection, post-diagnosis monitoring, and effect evaluation of patients. However, the common operation in clinical brain tumor segmentation is still manual segmentation, lead to its time-consuming and large performance difference between different operators, a consistent and accurate automatic segmentation method is urgently needed. With the continuous development of deep learning, researchers have designed many automatic segmentation algorithms; however, there are still some problems: (1) The research of segmentation algorithm mostly stays on the 2D plane, this will reduce the accuracy of 3D image feature extraction to a certain extent. (2) MRI images have gray-scale offset fields that make it difficult to divide the contours accurately.
Methods
To meet the above challenges, we propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet. In our study, the Squeeze and Excite (SE) module is added to each encoder, the Attention Guide Filter (AG) module is added to each decoder, using the channel relationship to automatically enhance the useful information in the channel to suppress the useless information, and use the attention mechanism to guide the edge information and remove the influence of irrelevant information such as noise.
Results
We used the BraTS2020 challenge online verification tool to evaluate our approach. The focus of verification is that the Dice scores of the whole tumor, tumor core and enhanced tumor are 0.68, 0.85 and 0.70, respectively.
Conclusion
Although MRI images have different intensities, AGSE-VNet is not affected by the size of the tumor, and can more accurately extract the features of the three regions, it has achieved impressive results and made outstanding contributions to the clinical diagnosis and treatment of brain tumor patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.