Understanding the crosswind stability of cars under strong wind loads and research on wind resistance methods is important for improving the safety performance of wind-induced driving on bridges. Taking van-body trucks as the research object, numerical calculation methods and wind tunnel test methods are used to conduct the wind-induced driving safety analyses of van trucks on a cross-sea bridge. The influence of the structural parameters of the barrier-type wind barrier on the aerodynamic characteristics and straight-line driving stability of the trucks on the bridge is studied and analyzed quantitatively. The results show that the decrease in the porosity of the wind barrier can effectively reduce the average wind speed of the bridge deck, and increasing the height of the wind barrier can effectively reduce the wind speed and increase the occlusion height of the bridge deck. The lateral acceleration, yaw rate, and lateral displacement of trucks decrease with the decrease in the porosity of the wind barrier and decrease with the increase in the height of the wind barrier. The research conclusions can not only provide data support for wind-induced driving safety analysis and the wind-resistant design of bridges but also provide a new method to balance the requirements of bridge wind-induced driving safety and bridge wind-induced structure safety.
To explore the influence of bridge wind barriers, with their specific opening shapes and arrangements, on bridge deck wind fields and vehicle driving stability under different crosswinds, five bridge wind barrier schemes were designed. For two incoming wind speeds, the wind speed at different heights over three traffic lanes and the aerodynamic six-component force of the vehicle model were measured, and the influence of the wind barrier parameters on the vehicle driving stability was analyzed. The equivalent wind speed reduction coefficient of the wind barrier was compared with the dimensionless coefficients of the aerodynamic side force, roll moment, and aerodynamic lift to verify the accuracy of the shielding effect evaluation indices. The final conclusions provide a useful reference for designing bridge wind barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.