A snake robot has to raise its head to acquire a wide visual space for planning complex tasks such as inspecting unknown environments, tracking a flying object and acting as a manipulator with its raising part. However, only a few researchers currently focus on analyzing the head-raising motion of snake robots. Thus, a predefined spiral curve method is proposed for the head-raising motion of such robots. First, the expression of the predefined spiral curve is designed. Second, with the curve and a line segments model of a snake robot, a shape-fitting algorithm is developed for constraining the robot’s macro shape. Third, the coordinate system of the line segments model of the robot is established. Then, phase-shifting and angle-solving algorithms are developed to obtain the angle sequences of roll, pitch, and yaw during the head-raising motion. Finally, the head-raising motion is simulated using the angle sequences to validate the feasibility of this method.
This paper proposes a kinematic obstacle avoidance algorithm for Space hyper-redundant manipulators, and its basic idea is to use a static and a dynamic curve to constrain the macroshape of the manipulators simultaneously. The static curve is constructed based on a traditional rapidly exploring random tree algorithm, and a backbone curve is utilized as the dynamic curve. For these two curves, two novel shape control methods are proposed to accomplish the shape constraining process. Finally, we verify the reliability and effectiveness of our algorithm through simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.