Environmentally friendly and low-cost catalysts are important for the rapid mineralization of organic contaminants in powerful advanced oxidation processes (AOPs). In this study, we reported N-doped graphitic biochars (N-BCs) as low-cost and efficient catalysts for peroxydisulfate (PDS) activation and the degradation of diverse organic pollutants in water treatment, including Orange G, phenol, sulfamethoxazole, and bisphenol A. The biochars at high annealing temperatures (>700 °C) presented highly graphitic nanosheets, large specific surface areas (SSAs), and rich doped nitrogen. In particular, N-BC derived at 900 °C (N-BC900) exhibited the highest degradation rate, which was 39-fold and 6.5-fold of that on N-BC400 and pristine biochar, respectively, and the N-BC900 surpassed most popular metal or nanocarbon catalysts. Different from the radical-based oxidation in N-BC400/PDS via the persistent free radicals (PFRs), singlet oxygen and nonradical pathways (surface-confined activated persulfate-carbon complexes) were discovered to dominate the oxidation processes in N-BC900/PDS. Moreover, the adsorption of organics was determined to be the key step determining reaction rate, revealing that the pre-adsorption of reactants significantly accelerated the nonradical oxidation pathway. This study not only provides robust and cheap carbonaceous materials for environmental remediation but also enables the first insight into the graphitic biochar-based nonradical catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.