Inflammatory markers have a wide range of predictive values in the prognosis of non-small lung cancer (NSCLC). Poor nutritional status usually means a poor prognosis in patients with NSCLC, which is widely recognized by oncologists and nutritionists. Serum albumin has a certain value in evaluating the prognosis of patients. Several inflammatory albumin-related markers have been proposed, but they have not been widely used in predicting the prognosis of NSCLC in clinical practice. We aim to systematically review the published clinical evidence of albumin-related inflammatory markers in predicting the prognosis of NSCLC and to describe their progress and value. The results showed that the markers included in the review could be prognostic indicators in patients with NSCLC. However, we found that the cut-off value of albumin-related inflammatory markers with quantitative nature was very chaotic and needed to be defined by recognized standards. We summarized and compared the advantages and disadvantages of these markers, but a prospective cohort study with long-term follow-up after adjustment for important confounders is still necessary. Whether the results and conclusions could be directly applied in clinical practice needs to be identified and evaluated. There is an urgent need to classify and standardize the albumin-related inflammatory markers that play an important role in the prognosis of NSCLC, which is the key to ensuring the transformation from clinical study to clinical application.
Ovarian cancer (OC) is one of the deadliest malignant tumors affecting women worldwide. The predictive value of some blood inflammatory composite markers in OC has been extensively reported. They can be used for early detection and differential diagnosis of OC and can be used for predicting survival, treatment response, and recurrence in the affected patients. Here, we reviewed the predictive values of composite inflammatory markers based on complete blood count, namely neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio, and systemic inflammation index and markers based on blood protein, namely C-reactive protein-to-albumin ratio and prognostic nutritional index in OC, with a focus on NLR and PLR. We referred to the clinical studies on these six markers, reviewed the patient population, and summarized the marker cut-off values, significance, and limitations of these studies. All these studies were retrospective and most of them were single-center clinical studies with small sample sizes. We found that the cut-off values of these markers have not been unified, and methods used to determine these values varied among studies. The predictive value of these markers on survival was mainly reflected in the postoperative patients of multiple subtypes of ovarian cancer including epithelial OC, high-grade serous ovarian carcinoma, and ovarian clear cell carcinoma. We focused on NLR and PLR and calculated their pooled hazard ratios. NLR and PLR were reliable in predicting overall and progression-free survivals in patients with OC. Therefore, it is necessary to adjust important confounding factors and conduct a long-term follow-up prospective cohort study to further clarify the cut-off values of NLR and PLR and their clinical applications.
To establish a prognostic model based on immune-related microRNA (miRNA) for pancreatic carcinoma. Weighted correlation network analysis (WGCNA) was performed using the "WGCNA" package to find the key module genes involved in pancreatic carcinoma. Spearman correlation analysis was conducted to screen immune-related miRNAs. Uni- and multi-variate COX regression analyses were carried out to identify miRNAs prognostic for overall survival (OS) of pancreatic carcinoma, which were then combined to generate a prognostic model. Kaplan–Meier survival analysis, receiver operating characteristic (ROC) analysis, distribution plot of survival status in patients and regression analysis were collectively performed to study the accuracy of the model in prognosis. Target genes of the miRNAs in the model were intersected with the key module genes, and a miRNA–mRNA network was generated and visualized by Cytoscape3.8.0. TIMER analysis was conducted to study the abundance of immune infiltrates in tumor microenvironment of pancreatic carcinoma. Expression levels of immune checkpoint genes in subgroups stratified by the model were compared by Wilcoxon test. Gene Set Enrichment Analysis (GSEA) was performed to analyze the enriched signaling pathways between subgroups. Differential analysis revealed 1826 genes differentially up-regulated in pancreatic carcinoma and 1276 genes differentially down-regulated. A total of 700 immune-related miRNAs were obtained, of which 7 miRNAs were significantly associated with OS of patients and used to establish a prognostic model with accurate predictive performance. There were 99 mRNAs overlapped from the 318 target genes of the 7 miRNAs and the key modules genes analyzed by WGCNA. Patient samples were categorized as high or low risk according to the prognostic model, which were significantly associated with dendritic cell infiltration and expression of immune checkpoint genes (TNFSF9, TNFRSF9, KIR3DL1, HAVCR2, CD276 and CD80). GSEA showed remarkably enriched signaling pathways in the two subgroups. This study identified an immune-related 7-miRNA based prognostic model for pancreatic carcinoma, which could be used as a reliable tool for prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.