In order to address the issue of high temperatures and thermal damages in deep mines, the factors causing downhole heat damage at high temperatures were analyzed, the mine ventilation system was optimized and rebuilt, and a cooling system was established. The proposed cooling system uses mine water as the cooling source, and its features are based on the analysis of traditional cooling systems. The current ventilation system in the 1118 m deep pit of the Jinqu Gold Mine was evaluated, and the ventilation network, ventilation equipment, and ventilation structures near the underground working face were optimized. The low-temperature mine water stored in the middle section of the mine at 640 m depth was used as the cooling source, and a cooling system was established near the 440 m deep middle return well to alleviate the high-temperature and high-humidity conditions of the 280 m deep middle-western area. The results show that the effective air volume in the west wing at 280 m was 3.0 m3/s, the operating ambient temperature was 27.6°C, the relative humidity was reduced to 76%, and the temperature was reduced by 5-6°C after the optimization of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.