Highlights d Functionally distinct neuronal ensembles exist within a single memory engram d Fosand Npas4-dependent ensembles undergo distinct synaptic modifications after CFC d Fosand Npas4-dependent ensembles drive memoryguided behaviors in opposite directions d Memory generalization and discrimination, respectively, require MEC and CCK + interneurons
Immediate early genes (IEGs) are rapidly activated after sensory and behavioral experience and are believed to be critical for converting experience into long-term memory. Neuronal PAS domain protein 4 (Npas4), a recently discovered IEG, has several characteristics that make it likely to be a particularly important molecular link between neuronal activity and memory: it is among the most rapidly induced IEGs, is expressed only in neurons, and is selectively induced by neuronal activity. By orchestrating distinct activity-dependent gene programs in different neuronal populations, Npas4 affects synaptic connections in excitatory and inhibitory neurons, neural circuit plasticity and memory formation. It may also be involved in circuit homeostasis through negative feedback and psychiatric disorders. We summarize these findings and discusses their implications.
BackgroundBayesian methods allow prediction of genomic breeding values (GEBVs) using high-density single nucleotide polymorphisms (SNPs) covering the whole genome with effective shrinkage of SNP effects using appropriate priors. In this study we applied a modification of the well-known BayesA and BayesB methods to estimate the proportion of SNPs with zero effects (π) and a common variance for non-zero effects. The method, termed BayesCπ, was used to predict the GEBVs of the last generation of the QTLMAS2010 data. The accuracy of GEBVs from various methods was estimated by the correlation with phenotypes in the last generation. The methods were BayesCPi and BayesB with different π values, both with and without polygenic effects, and best linear unbiased prediction using an animal model with a genomic or numerator relationship matrix. Positions of quantitative trait loci (QTLs) were identified based on the variances of GEBVs for windows of 10 consecutive SNPs. We also proposed a novel approach to set significance thresholds for claiming QTL in this specific case by using pedigree-based simulation of genotypes. All analyses were focused on detecting and evaluating QTL with additive effects.ResultsThe accuracy of GEBVs was highest for BayesCπ, but the accuracy of BayesB with π equal to 0.99 was similar to that of BayesCπ. The accuracy of BayesB dropped with a decrease in π. Including polygenic effects into the model only had marginal effects on accuracy and bias of predictions. The number of QTL identified was 15 when based on a stringent 10% chromosome-wise threshold and increased to 21 when a 20% chromosome-wise threshold was used.ConclusionsThe BayesCπ method without polygenic effects was identified to be the best method for the QTLMAS2010 dataset, because it had highest accuracy and least bias. The significance criterion based on variance of 10-SNP windows allowed detection of more than half of the QTL, with few false positives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.