HighlightNapthoquinones, antimicrobial and phytotoxic metabolites that are involved in plant defence, are produced and released into the rhizosphere by root hairs and root periderm tissue of Echium plantagineum.
Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons.
The production and quality of Rehmannia glutinosa can be dramatically reduced by replant disease under consecutive monoculture. The root-associated microbiome, also known as the second genome of the plant, was investigated to understand its impact on plant health. Culture-dependent and culture-independent pyrosequencing analysis was applied to assess the shifts in soil bacterial communities in the rhizosphere and rhizoplane under consecutive monoculture. The results show that the root-associated microbiome (including rhizosphere and rhizoplane microbiomes) was significantly impacted by rhizocompartments and consecutive monoculture. Consecutive monoculture of R. glutinosa led to a significant decline in the relative abundance of the phyla Firmicutes and Actinobacteria in the rhizosphere and rhizoplane. Furthermore, the families Flavobacteriaceae, Sphingomonadaceae, and Xanthomonadaceae enriched while Pseudomonadaceae, Bacillaceae, and Micrococcaceae decreased under consecutive monoculture. At the genus level, Pseudomonas, Bacillus, and Arthrobacter were prevalent in the newly planted soil, which decreased in consecutive monocultured soils. Besides, culture-dependent analysis confirmed the widespread presence of Pseudomonas spp. and Bacillus spp. in newly planted soil and their strong antagonistic activities against fungal pathogens. In conclusion, R. glutinosa monoculture resulted in distinct root-associated microbiome variation with a reduction in the abundance of beneficial microbes, which might contribute to the declined soil suppressiveness to fungal pathogens in the monoculture regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.