This paper demonstrates a technique to form a lateral homogeneous 2D MoS2 p-n junction by partially stacking 2D h-BN as a mask to p-dope MoS2. The fabricated lateral MoS2 p-n junction with asymmetric electrodes of Pd and Cr/Au displayed a highly efficient photoresponse (maximum external quantum efficiency of ∼7000%, specific detectivity of ∼5 × 10(10) Jones, and light switching ratio of ∼10(3)) and ideal rectifying behavior. The enhanced photoresponse and generation of open-circuit voltage (VOC) and short-circuit current (ISC) were understood to originate from the formation of a p-n junction after chemical doping. Due to the high photoresponse at low VD and VG attributed to its built-in potential, our MoS2 p-n diode made progress toward the realization of low-power operating photodevices. Thus, this study suggests an effective way to form a lateral p-n junction by the h-BN hard masking technique and to improve the photoresponse of MoS2 by the chemical doping process.
Semiconducting two-dimensional crystals are currently receiving significant attention because of their great potential to be an ultrathin body for efficient electrostatic modulation, which enables to overcome the limitations of silicon technology. Here we report that, as a key building block for two-dimensional semiconductor devices, vertical p–n junctions are fabricated in ultrathin MoS2 by introducing AuCl3 and benzyl viologen dopants. Unlike usual unipolar MoS2, the MoS2 p–n junctions show ambipolar carrier transport, current rectification via modulation of potential barrier in films thicker than 8 nm and reversed current rectification via tunnelling in films thinner than 8 nm. The ultimate thinness of the vertical p–n homogeneous junctions in MoS2 is experimentally found to be 3 nm, and the chemical doping depth is found to be 1.5 nm. The ultrathin MoS2 p–n junctions present a significant potential of the two-dimensional crystals for flexible, transparent, high-efficiency electronic and optoelectronic applications.
Diverse diode characteristics were observed in two-dimensional (2D) black phosphorus (BP) and molybdenum disulfide (MoS) heterojunctions. The characteristics of a backward rectifying diode, a Zener diode, and a forward rectifying diode were obtained from the heterojunction through thickness modulation of the BP flake or back gate modulation. Moreover, a tunnel diode with a precursor to negative differential resistance can be realized by applying dual gating with a solid polymer electrolyte layer as a top gate dielectric material. Interestingly, a steep subthreshold swing of 55 mV/dec was achieved in a top-gated 2D BP-MoS junction. Our simple device architecture and chemical doping-free processing guaranteed the device quality. This work helps us understand the fundamentals of tunneling in 2D semiconductor heterostructures and shows great potential in future applications in integrated low-power circuits.
A systematic modulation of the carrier type in molybdenum ditelluride (MoTe ) field-effect transistors (FETs) is described, through rapid thermal annealing (RTA) under a controlled O environment (p-type modulation) and benzyl viologen (BV) doping (n-type modulation). Al O capping is then introduced to improve the carrier mobilities and device stability. MoTe is found to be ultrasensitive to O at elevated temperatures (250 °C). Charge carriers of MoTe flakes annealed via RTA at various vacuum levels are tuned between predominantly pristine n-type ambipolar, symmetric ambipolar, unipolar p-type, and degenerate-like p-type. Changes in the MoTe -transistor performance are confirmed to originate from the physical and chemical absorption and dissociation of O , especially at tellurium vacancy sites. The electron branch is modulated by varying the BV dopant concentrations and annealing conditions. Unipolar n-type MoTe FETs with a high on-off ratio exceeding 10 are achieved under optimized doping conditions. By introducing Al O capping, carrier field effect mobilities (41 for holes and 80 cm V s for electrons) and device stability are improved due to the reduced trap densities and isolation from ambient air. Lateral MoTe p-n diodes with an ideality factor of 1.2 are fabricated using the p- and n-type doping technique to test the superb potential of the doping method in functional electronic device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.