The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants.
Long-distance insular dispersal is associated with divergence and speciation because of founder effects and strong genetic drift. The cotton tribe (Gossypieae) has experienced multiple transoceanic dispersals, generating an aggregate geographic range that encompasses much of the tropics and subtropics worldwide. Two genera in the Gossypieae, Kokia and Gossypioides, exhibit a remarkable geographic disjunction, being restricted to the Hawaiian Islands and Madagascar/East Africa, respectively. We assembled and use de novo genome sequences to address questions regarding the divergence of these two genera from each other and from their sister-group, Gossypium. In addition, we explore processes underlying the genome downsizing that characterizes Kokia and Gossypioides relative to other genera in the tribe. Using 13,000 gene orthologs and synonymous substitution rates, we show that the two disjuncts last shared a common ancestor ∼5 Ma, or half as long ago as their divergence from Gossypium. We report relative stasis in the transposable element fraction. In comparison to Gossypium, there is loss of ∼30% of the gene content in the two disjunct genera and a history of genome-wide accumulation of deletions. In both genera, there is a genome-wide bias toward deletions over insertions, and the number of gene losses exceeds the number of gains by ∼2- to 4-fold. The genomic analyses presented here elucidate genomic consequences of the demographic and biogeographic history of these closest relatives of Gossypium, and enhance their value as phylogenetic outgroups.
Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers.
The allopolyploid speciation process faces the genomic challenge of stoichiometric disruption caused by merging biparental nuclear genomes with only one (usually maternal) of the two sets of progenitor cytoplasmic genomes. The photosynthetic protein 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is composed of nuclear-encoded small subunits (SSUs) and plastome-encoded large subunits (LSUs), making it an ideal enzyme to explore the evolution process of cytonuclear accommodation. We investigated the variation of SSUs and their encoding rbcS genes in synthetic nascent rice (Oryza sativa L.) allotetraploid lineages, formed from the parental subspecies japonica and indica of Asian rice. The evolution of rbcS genes in rice subspecies involves both mutation and concerted homogenization. Within reciprocal rice hybrids and allopolyploids, there was no consistent pattern of biased expression of rbcS alleles or homeologs, nor was there biased gene conversion favoring the maternal gene copies. Instead, we observed an apparently stochastic pattern of rbcS intergenomic gene conversions and biased expression of rbcS homeologs. We conclude that in young rice allopolyploids, cytonuclear coordination either is not selectively favored because of high parental sequence similarity or because there has been insufficient time for subtle selective effects to become observable. P olyploidy, involving the combining of two or more sets of diploid parental nuclear genomes, recursively occurs during plant evolution, generating modern plant lineages that are considered to be paleopolyploid (having • This study characterized the evolutionary features of rbcS genes in diploid rice subspecies and investigated the cytonuclear coevolution of Rubisco genes (biparentally inherited nuclear rbcS and unimaternal plastid rbcL genes encoding small subunits and large subunits, respectively) in synthesized rice hybrids (9N and N9) and allotetraploids (99NN and NN99).
A novel endogenous inhibitor of the proteasome (high molecular weight multicatalytic protease) has been isolated and characterized from human erythrocytes. After purification by ion-exchange and sizing chromatography, the inhibitor displayed a native molecular mass of approximately 200 kDa and contained a single subunit of 50 kDa with an isoelectric point of 6.9. Although the inhibitor noncompetitively blocks proteolysis of [methyl-14C]-alpha-casein (Ki = 7.1 x 10(-8) M) and inhibits hydrolysis of Suc-Leu-Leu-Val-Tyr-AMC, it did not affect hydrolysis of other peptide substrates, such as MeOSuc-Phe-Leu-Phe-MNA and Z-Ala-Arg-Arg-MNA. To further characterize the 50-kDa inhibitor, a monoclonal antibody (MI-8) was generated that showed specific binding upon Western blot analysis of both native PAGE and SDS-PAGE. Immunoprecipitation with MI-8 specifically removed inhibitor activity against the proteasome. The 50-kDa inhibitor is distinct from a previously described 40-kDa inhibitor of the proteasome (Murakami, K., & Etlinger, J.D. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 7588-7592) on the basis of lack of cross-reactivity with MI-8 and dissimilar peptide digest patterns. It is suggested that these endogenous inhibitors may have a role in ATP/ubiquitin-dependent proteolysis and/or other cellular functions involving this protease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.