BackgroundUnderstanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge.ResultsWe have developed ngs.plot – a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready.ConclusionsWe conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.
Summary
Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery.
ChIP-seq is increasingly being used for genome-wide profiling of histone modification marks. It is of particular importance to compare ChIP-seq data of two different conditions, such as disease vs. control, and identify regions that show differences in ChIP enrichment. We have developed a powerful and easy to use program, called diffReps, to detect those differential sites from ChIP-seq data, with or without biological replicates. In addition, we have developed two useful tools for ChIP-seq analysis in the diffReps package: one for the annotation of the differential sites and the other for finding chromatin modification “hotspots”. diffReps is developed in PERL programming language and runs on all platforms as a command line script. We tested diffReps on two different datasets. One is the comparison of H3K4me3 between two human cell lines from the ENCODE project. The other is the comparison of H3K9me3 in a discrete region of mouse brain between cocaine- and saline-treated conditions. The results indicated that diffReps is a highly sensitive program in detecting differential sites from ChIP-seq data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.