In recent years, the accelerated pace of urbanization has increased patch fragmentation, which has had a certain impact on the structure and ecological environment of forest–grass ecological networks, and certain protection measures have been taken in various regions. Therefore, studying the spatiotemporal changes and correlations of ecological service functions and forest–grass ecological networks can help to better grasp the changes in landscape ecological structure and function. This paper takes the Wuding River Basin as the research area and uses the windbreak and sand fixation service capacity index, soil conservation capacity, and net primary productivity (NPP) to evaluate the ecological service capacity of the research area from the three dimensions of windbreak and sand fixation, soil conservation, and carbon sequestration. The Regional Sustainability and Environment Index (RSEI) is used to extract ecological source areas, and GIS spatial analysis and the minimum cumulative resistance (MCR) model are used to extract potential ecological corridors. Referring to complex network theory, topology metrics such as degree distribution and clustering coefficient are calculated, and their correlation with ecological service capacity is explored. The results show that the overall ecological service capacity of sand fixation, soil fixation, and carbon sequestration in the research area in 2020 has increased compared to 2000, and the ecological flow at the northern and northwest boundaries of the river basin has been enhanced, but there are still shortcomings such as fragmented ecological nodes, a low degree of clustering, and poor connectivity. In terms of the correlation between topology indicators and ecological service functions, the windbreak and sand fixation service capacity index have the strongest correlation with clustering and the largest grasp, while the correlation between soil conservation capacity and eigencentrality is the strongest and has the largest grasp. The correlation between NPP and other indicators is not obvious, and its correlation with eccentricity and eigencentrality is relatively large.
In the context of strengthening the construction of ecological civilization and accelerating the “carbon peak” in China, the regional ecological pattern and its connection with carbon sink capacity have become an urgent topic. Given that Inner Mongolia is a large carbon emission province and the conflict between economic development and ecological protection is particularly prominent, we took Inner Mongolia as an example to extract its ecospatial network, then calculated the integrity index, topological indices, and recovery robustness of the network and evaluated integrity and other properties of the ecospatial network structure by combining them with the ecological background. In addition, we analyzed the relationship between the topological indices and net primary productivity (NPP). The results showed that the network was scale-free and heterogeneous, with low integrity, connectivity and stability, which were the focus of future optimization. The nodes with important functions were mainly distributed in the farm-forest ecotone, grasslands, and the agro-pastoral ecotone; under the simulation attack, the node recovery robustness was stronger than the corridor recovery robustness, and NPP was negatively and significantly correlated with the woodland nodes and grassland nodes. In terms of ecological restoration, the unused land in the west is a key area, and it is necessary to add new ecological nodes and corridors. In terms of enhancing carbon sequestration capacity, under the premise of ensuring network connectivity, the appropriate and rational merging of ecological nodes and corridors within woodlands and grasslands is a particularly effective means. This study provides a reference for evaluating and optimizing the ecological pattern of areas with prominent ecological problems and improving the carbon sink of ecosystems in terms of their ecospatial network structure.
Permafrost and alpine vegetation are widely distributed in Tibet, which is a sensitive area for global climate change. In this study, we inverted the surface deformation from 22 May 2018 to 9 October 2021 in a rectangular area within the city of Linzhi, Tibet, using the Sentinel1-A data and two time-series interferometric system aperture radar (InSAR) techniques. Then, the significant features of surface deformation were analyzed separately according to different vegetation types. Finally, multiple machine learning methods were used to predict future surface deformation, and the results were compared to obtain the model with the highest prediction accuracy. This study aims to provide a scientific reference and decision basis for global ecological security and sustainable development. The results showed that the surface deformation rate in the study area was basically between ±10 mm/a, and the cumulative surface deformation was basically between ±35 mm. The surface deformation of grassland, meadow, coniferous forest, and alpine vegetation were all significantly correlated with NDVI, and the effect of alpine vegetation, coniferous forest, and grassland on permafrost was stronger than that of the meadow. The prediction accuracy of the Holt–Winters model was higher than that of Holt′s model and the ARIMA model; it was expected that the ground surface would keep rising in the next two months, and the ground surface deformation of alpine vegetation and the coniferous forest was relatively small. The above studies indicated that the surface deformation in the Tibetan permafrost region was relatively stable under the conditions of alpine vegetation and coniferous forest. Future-related ecological construction needs to pay more attention to permafrost areas under grassland and meadow conditions, which are prone to surface deformation and affect the stability of ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.