BackgroundPaclitaxel is commonly used as a cancer chemotherapy drug that frequently causes peripheral neuropathic pain. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein, and caspase-1, which functions to switch on the inflammatory process and the release of interleukin-1β. Growing evidences have supported that peripheral interleukin-1β is critical in enhancing paclitaxel-induced neuropathic pain. However, whether activation of NLRP3 inflammasome in peripheral nerve contributes to paclitaxel-induced neuropathic pain is still unclear.ResultsPaclitaxel induced mechanical allodynia of rats from day 3 and worsened gradually till 3 weeks after injection. Paclitaxel resulted in expression of NLRP3 and activated fragments of caspase-1 and interleukin-1β in L4-6 dorsal root ganglia and sciatic nerve three weeks after injection, indicating activation of NLRP3 inflammasome. The expression of NLRP3 was located in CD68-labeled macrophages infiltrating in L4-6 dorsal root ganglia and sciatic nerve, and paclitaxel increased the expression of NLRP3 in macrophage. Moreover, the paclitaxel elicited mitochondria damage, which became swollen and enlarged in macrophages and axons of sciatic nerve three weeks after injection. In vitro, paclitaxel increased the number of damaged mitochondria and mitochondrial reactive oxygen species production in the rat alveolar macrophage cell line NR8383. The administration of a non-specific reactive oxygen species scavenger, phenyl-N-tert-butylnitrone, markedly alleviated mechanical allodynia and inhibited the activation of NLRP3 inflammasome in L4-6 dorsal root ganglia and sciatic nerve of the paclitaxel-induced neuropathic pain model.ConclusionsPaclitaxel induced mechanical allodynia and activation of NLRP3 inflammasome in infiltrated macrophages of L4-6 dorsal root ganglia and sciatic nerve. Paclitaxel elicited mitochondria damage and reactive oxygen species production may result in activation of NLRP3 inflammasome in peripheral nerve, which contributes to paclitaxel-induced neuropathic pain.
Background Conditioned pain modulation (CPM) is impaired in people with chronic pain such as knee osteoarthritis (KOA). The purpose of this randomized, controlled clinical trial was to investigate whether strong electroacupuncture (EA) was more effective on chronic pain by strengthening the CPM function than weak EA or sham EA in patients with KOA. Methods In this multicenter, three-arm parallel, single-blind randomized controlled trial, 301 patients with KOA were randomly assigned. Patients were randomized into three groups based on EA current intensity: strong EA (> 2 mA), weak EA (< 0.5 mA), and sham EA (non-acupoint). Treatments consisted of five sessions per week, for 2 weeks. Primary outcome measures were visual analog scale (VAS), CPM function, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Results Three hundred one patients with KOA were randomly assigned, among which 271 (90.0%) completed the study (mean age 63.93 years old). One week of EA had a clinically important improvement in VAS and WOMAC but not in CPM function. After 2 weeks treatment, EA improved VAS, CPM, and WOMAC compared with baseline. Compared with sham EA, weak EA (3.8; 95% CI 3.45, 4.15; P < .01) and strong EA (13.54; 95% CI 13.23, 13.85; P < .01) were better in improving CPM function. Compared with weak EA, strong EA was better in enhancing CPM function (9.73; 95% CI 9.44, 10.02; P < .01), as well as in reducing VAS and total WOMAC score. Conclusion EA should be administered for at least 2 weeks to exert a clinically important effect on improving CPM function of KOA patients. Strong EA is better than weak or sham EA in alleviating pain intensity and inhibiting chronic pain. Trial registration This study was registered with the Chinese Clinical Trial Registry ( ChiCTR-ICR-14005411 ), registered on 31 October 2014. Electronic supplementary material The online version of this article (10.1186/s13075-019-1899-6) contains supplementary material, which is available to authorized users.
Background. Nocturnal enuresis (NE) is recognized as a widespread health problem in young children and adolescents. Clinical researches about acupuncture therapy for nocturnal enuresis are increasing, while systematic reviews assessing the efficacy of acupuncture therapy are still lacking. Objective. This study aims to assess the effectiveness of acupuncture therapy for nocturnal enuresis. Materials and Methods. A comprehensive literature search of 8 databases was performed up to June 2014; randomized controlled trials which compared acupuncture therapy and placebo treatment or pharmacological therapy were identified. A meta-analysis was conducted. Results. This review included 21 RCTs and a total of 1590 subjects. The overall methodological qualities were low. The results of meta-analysis showed that acupuncture therapy was more effective for clinical efficacy when compared with placebo or pharmacological treatment. Adverse events associated with acupuncture therapy were not documented. Conclusion. Based on the findings of this study, we cautiously suggest that acupuncture therapy could improve the clinical efficacy. However, the beneficial effect of acupuncture might be overstated due to low methodological qualities. Rigorous high quality RCTs are urgently needed.
Tourette syndrome (TS), a developmental neurobehavioral disorder, is characterized by involuntary behavioral stereotypies. Clinical studies have confirmed the positive effect of acupuncture on treating TS, but the underlying mechanisms are not fully understood. In the present study, we used behavioral tests, Western blotting, double-immunofluorescence labeling, and fluorescence spectrophotometry to investigate whether acupuncture performed at acupoints “Baihui” (GV20) and “Yintang” (GV29) affected behavioral stereotypies and regulated the dopamine (DA) system in three different brain regions in Balb/c mice injected with 3,3′-iminodipropionitrile (IDPN) as a model for TS. We found that acupuncture alleviated behavioral stereotypies, down-regulated the expression of D1R and D2R in the striatum (STR) and substantia nigra pars compacta (SNpc), and decreased the concentration of DA in the STR, SNpc, and prefrontal cortex (PFC) as well. Moreover, acupuncture reduced the expression of tyrosine hydroxylase (TH) in the SNpc. Conclusively, acupuncture ameliorated behavioral stereotypies by regulating the DA system in the STR, SNpc, and PFC. Our findings provide novel evidence for the therapeutic effect of acupuncture on TS.
PurposeKnee osteoarthritis (KOA) is a highly prevalent, chronic joint disorder, with chronic pain as its typical symptom. Although studies have shown that an activated peripheral CB2 receptor can reduce acute pain, whether the CB2 receptor is involved in electroacupuncture (EA) inhibiting chronic pain and the involved mechanism remains unclear. The aim of this study was to investigate whether EA may strengthen peripheral CB2 receptor-inhibited chronic pain in a mouse model of KOA.Materials and methods:KOA was induced by intra-articular injection of monosodium iodoacetate (MIA) into the left knee joint of mice. Thermal hyperalgesia was tested with the hot plate test, and mechanical allodynia was quantified using von Frey filaments. The expression of CB2 receptor and IL-1β were quantified by using immunofluorescence labeling.ResultsEA treatment at 2 Hz+1 mA significantly increased the expression of CB2 receptor in fibroblasts and decreased the expression of IL-1β in the menisci compared with that in the KOA group. However, EA had no effect on the expression of IL-1β in CB2−/− mice. At 2 Hz+1 mA, EA significantly increased mechanical threshold, thermal latency, and weight borne after KOA modeling. However, knockout of the CB2 receptor blocked these effects of EA. After 2 Hz+1 mA treatment, EA significantly reduced the Osteoarthritis Research Society International (OARSI) score after KOA modeling. However, EA had no significant effect on the OARSI score in CB2−/− mice.ConclusionEA reduced the expression of IL-1β by activating the CB2 receptor, thus inhibiting the chronic pain in the mouse model of KOA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.