Using the monotone iterative technique, we investigate the existence of iterative positive solutions to a coupled system of fractional differential equations supplemented with multistrip and multipoint mixed boundary conditions. It is worth mentioning that the nonlinear terms of the system depend on the lower fractional-order derivatives of the unknown functions and the boundary conditions involve the combination of the multistrip fractional integral and the multipoint value of the unknown functions in [0, 1].
In this paper, we consider a fractional differential system with multistrip and multipoint mixed boundary conditions involving p-Laplacian operator and fractional derivatives. The existence result of positive solutions is established by the Leggett-Williams fixed point theorem. Also, an example is presented to illustrate our main result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.