ICEHpa1 was identified in the genome of a serovar 8 Haemophilus parasuis ST288 isolate YHP170504 from a case of swine lower respiratory tract infection. The aim of the present study was to characterize the integrative conjugative element ICEHpa1 and its multiresistance region. Susceptibility testing was determined by broth microdilution and the complete ICEHpa1 was identified by WGS analysis. The full sequence of ICEHpa1 was analyzed with bioinformatic tools. The presence of ICEHpa1, its circular intermediate and integration site were confirmed by PCR and sequence analysis. Transfer of ICEHpa1 was confirmed by conjugation. ICEHpa1 has a size of 68,922 bp with 37.42% GC content and harbors 81 genes responsible for replication and stabilization, transfer, integration, and accessory functions, as well as seven different resistance genes [bla Rob−3 , tet(B), aphA1, strA, strB, aac(6)-Ie-aph(2)-Ia, and sul2]. Conjugation experiments showed that ICEHpa1 could be transferred to H. parasuis V43 with frequencies of 6.1 × 10 −6. This is the first time a multidrug-resistance ICE has been reported in H. parasuis. Seven different resistance genes were located on a novel integrative conjugative element ICEHpa1, which suggests that the ICEHpa1 is capable of acquiring foreign genes and serving as a carrier for various resistance genes.
Introduction. The bla CTX-M-3 gene has rarely been reported in Morganella morganii strains and its genetic environment has not yet been investigated. Aim. To identify the bla CTX-M-3 gene in M. morganii isolated from swine and characterize its genetic environment. Methodology. A M. morganii isolate (named MM1L5) from a deceased swine was identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing. The bla genes were detected and then the genetic location and environment of bla CTX-M-3 were investigated by Southern blot and PCR mapping, respectively. The M. morganii bla CTX-M-3 gene was cloned and expressed in Escherichia coli . Results. Isolate MM1L5 harboured the bla CTX-M-3 and bla TEM-1 genes. The bla CTX-M-3 gene, located on the chromosome, was co-carried with an IS26 and bla TEM-1 gene by a novel 6361 bp IS26-flanked composite transposon, designated Tn6741. This transposon consisted of a novel bla CTX-M-3-containing module, IS26-ΔISEcp1-bla CTX-M-3-Δorf477-IS26 (named Tn6710), and a bla TEM-1-containing module, IS26-Δorf477-bla TEM-1-tnpR-IS26, differing from previous reports. Phylogenetic analysis showed a significant variation based on the sequence of Tn6741, as compared to those of other related transposons. Interestingly, although the cloned bla CTX-M-3 gene could confer resistance to ceftiofur, cefquinome, ceftriaxone and cefotaxime, one amino acid substitution (Ile-142-Thr) resulted in a significant reduction of resistance to these antimicrobials. Conclusion. This is the first time that bla CTX-M-3 has been identified on a chromosome from a M. morganii isolate. Furthermore, the bla CTX-M-3 gene was located with an IS26 element and bla TEM-1 gene on a novel IS26-flanked composite transposon, Tn6741, suggesting that Tn6741 might act as a reservoir for the bla CTX-M-3 and bla TEM-1 genes and may become an important vehicle for their dissemination among M. morganii .
The objective of this study was to explore the genetic and biological features of the tet (M)-harboring plasmid pTS14 in Salmonella enterica strain S14 isolated from a chicken fecal sample. Plasmid pTS14 was identified by conjugation, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and plasmid sequencing. The biological characteristics of pTS14 were assessed via stability, growth kinetics, and starvation survival experiments. Strain S14, belonging to ST3007, harbored a 119-kb tet (M)-bearing IncF2:A1:B1 conjugative plasmid pTS14. The plasmid pTS14 contained a novel transposon Tn 6709 with the genetic structure IS 26 - tnpA1 - tnpA2 -Δ orf13 - LP - tet (M)- tnpX -Δ tnpR -IS 26 , and the resistance genes tet (B), tet (D), strAB , sul2 , and bla TEM–1b . In addition, pTS14 was found to be highly stable in the recipient strain E. coli J53. The transconjugant TS14 exhibited a higher survival ratio than E. coli J53 under permanent starvation-induced stress. The tet (M)-bearing IncF2 epidemic plasmid lineage may accelerate the dissemination of tet (M) and other genes by coselection, which could constitute a potentially serious threat to clinical treatment regimens.
Emergence of multidrug-resistant (MDR) Gram-negative (G - ) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G - bacteria are global challenges for the life sciences community and public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.