Objective. To investigate gait characteristics in children with spastic cerebral palsy during inclined treadmill walking under a virtual reality environment. Methods. Ten spastic cerebral palsy (CP) children and ten typically developing (TD) children were asked to walk at their comfortable speed on a treadmill at a ground level and 10° inclined. Three-dimensional kinematic data and ground reaction force data were captured in a computer-assisted rehabilitation environment system. Kinetic parameters and dynamic balance parameters were calculated using a standard biomechanical approach. Results. During uphill walking, both groups decreased walking speed and stride length and increased peak pelvis tilt, ankle dorsiflexion, and hip flexion. Compared with TD children, CP children had decreased walking speed and stride length, decreased peak hip abduction moment, increased stance phase percentage, increased peak ankle dorsiflexion and knee flexion, and increased peak hip extension moment. The peak trunk rotation angle, ankle angle at initial contact, and stride length showed a significant group∗walking condition interaction effect. Conclusions. CP children showed similar adjustments for most gait parameters during uphill walking as TD children. With a lower walking speed, CP children could maintain similar dynamic balance as TD children. Uphill walking magnifies the existing abnormal gait patterns of the cerebral palsy children. We suggest that during a treadmill training with an inclination, the walking speed should be carefully controlled in the case of improving peak joint loading too much.
This study conducted a personalized exercise prescription intervention on a child with viral encephalitis sequelae (VES). The purpose was to observe the rehabilitation process from the aspects of brain activation, and the curative effects on balance function and gait. A further aim was to explore the possible nerve biomechanical mechanisms between the extent of brain activation and the improvement in balance function and gait. A 12-week exercise prescription was used as the treatment method, and functional near-infrared spectroscopy (fNIRS), balance function test system, plantar pressure distribution system, and 3D gait system were used to assess the effects of the rehabilitation process pre and post the intervention. Following the exercise prescription intervention: (1) fNIRS showed that brain activation in the S1–D1, S1–D2, S1–D3, S2–D1, S3–D2, S3–D3, S4–D3, S5–D5, S5–D6, S5–D7, S7–D6, S7–D7, S8–D7, and S8–D8 increased significantly (P < 0.05). (2) The balance test showed that the area of motion ellipse and movement length of the child with eyes open decreased significantly and area of motion ellipse, back and forth swing, left and right swing and movement length of the child with eyes closed all decreased significantly (P < 0.05). (3) The static plantar pressure distribution demonstrated that the pressure center of the left and right foot decreased significantly (P < 0.05) from 5.3° dislocation in a straight line in the sagittal plane to 1°; an increment of the pressure loading was found on the forefoot of both feet compared with what was recorded in the pre-test. (4) The testing results of the 3D gait system showed that she had a shortened time of unilateral support phase and prolonged swing phase on the affected leg (P < 0.05), compared to that of the non-affected leg. Furthermore, the dual support phase had also been prolonged (P < 0.05). Conclusion: 12 weeks’ individualized exercise training can enhance the activation in the motor areas and improve balance function and gait in a child with VES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.