The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.
The closed-loop reservoir management technique enables a dynamic and real-time optimal production schedule under the existing reservoir conditions to be achieved by adjusting the injection and production strategies. This is one of the most effective ways to exploit limited oil reserves more economically and efficiently. There are two steps in closed-loop reservoir management: automatic history matching and reservoir production optimization. Both of the steps are large-scale complicated optimization problems. This paper gives a general review of the two basic techniques in closed-loop reservoir management; summarizes the applications of gradient-based algorithms, gradient-free algorithms, and artificial intelligence algorithms; analyzes the characteristics and application conditions of these optimization methods; and finally discusses the emphases and directions of future research on both automatic history matching and reservoir production optimization.
Recently, CNOOC launched the EOR with chemical flooding on more and more offshore oilfields in Bohai Bay in china. With the useful life of platform and the present production state, polymer flooding is considered as an important technology for the strategic development of offshore heavy oil fields in Bohai bay. Up to 2010, there are 3 polymer EOR projects on heavy oil field which the water cut is between 10 – 80%. And about 20 thousand tons polymer powder was used in 27 wells in the past 5 years. It has been seen that the water cut declined while the oil production increased. The application result shown it is feasible. The history of polymer EOR in Bohai Bay was present in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.