Excessive activation of inflammation and the accompanying lung vascular endothelial barrier disruption are primary pathogenic features of acute lung injury (ALI). Microtubule-associated protein 4 (MAP4), a tubulin assembly-promoting protein, is important for maintaining the microtubule (MT) cytoskeleton and cell-cell junctional structures. However, both the involvement and exact mechanism of MAP4 in the development of endothelial barrier disruption in ALI remains unknown. In this study, lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α) were applied to human pulmonary microvascular endothelial cells (HPMECs) to mimic the endothelial damage during inflammation in vitro. We demonstrated that the MAP4 (Ser696 and Ser787) phosphorylation increased concomitantly with the p38/MAPK pathway activation by the LPS and TNF-α stimulation of HPMECs, which induced MT disassembly followed by hyperpermeability. Moreover, the application of taxol, the overexpression of a MAP4 (Ala) mutant, or the application of the p38/MAPK inhibitor SB203580 inhibited the MT disruption and the intracellular junction dysfunction. In contrast, MKK6 (Glu), which constitutively activated p38/MAPK, resulted in microtubule depolymerisation and, subsequently, hyperpermeability. Our findings reveal a novel role of MAP4 in endothelial barrier dysfunction.
Coronary arterial disease is the most common cardiovascular disease. Myocardial ischemia-reperfusion injury caused by the initial interruption of organ blood flow and subsequent restoration of organ blood flow is an important clinical problem with various cardiac reperfusion strategies after acute myocardial infarction. Even though blood flow recovery is necessary for oxygen and nutrient supply, reperfusion causes pathological sequelae that lead to the aggravation of ischemic injury. At present, although it is known that injury will occur after reperfusion, clinical treatment always focuses on immediate recanalization. Mitochondrial fusion, fission, biogenesis, autophagy, and their intricate interaction constitute an effective mitochondrial quality control system. The mitochondrial quality control system plays an important role in maintaining cell homeostasis and cell survival. The removal of damaged, aging, and dysfunctional mitochondria is mediated by mitochondrial autophagy. With the help of appro-priate changes in mitochondrial dynamics, new mitochondria are produced through mitochondrial biogenesis to meet the energy needs of cells. Mitochondrial dysfunction and the resulting oxidative stress have been associated with the pathogenesis of ischemia/reperfusion (I/R) injury, which play a crucial role in the pathophysiological process of myocardial injury. This review aimed at elucidating the mitochondrial quality control system and establishing the possibility of using mitochondria as a potential therapeutic target in the treatment of I/R injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.