Design
and synthesis of air-stable and easily tailored high-performance
single-molecule magnets (SMMs) are of great significance toward the
implementation of SMMs in molecular-based magneto-electronic devices.
Here, by introducing electron-withdrawing fluorinated substituents on equatorial
ligand, two chiral Dy(III) macrocyclic complexes, RRRR-Dy-D
6hF12 (1) and SSSS-Dy-D
6hF12 (2), with a record anisotropy barrier exceeding
1800 K and the longest relaxation time approaching 2500 s at 2.0 K
for all known air-stable SMMs, were obtained. The nearly perfect axiality
of the ground Kramers doublet (KD) enables the open hysteresis loops
up to 20 K in the magnetically diluted sample. It is notable that
they are structurally rigid with high thermal stability and the apical
ligand can be tailored to carry proper surface-binding groups. This
finding not only improves the magnetic properties for air-stable SMMs
but also provides a new avenue for deposition of SMMs on surfaces.
We present a non-fullerene electron acceptor bearing a fused 10-heterocyclic ring with a narrow band gap, which achieved a power conversion efficiency of 6.5% when paired with PTB7-Th.
The structures, ionization potentials (IPs), electron affinities (EAs), and HOMO-LUMO gaps (∆ H-L) of the oligomers are studied by the density functional theory with B3LYP functional. The lowest excitation energies (Egs) and the maximal absorption wavelength λabs of oligomers of polyfluorene (PF) and poly(2,7-fluorene-alt-co-5,7-dihydrodibenz[c,e]oxepin) (PFDBO) are studied employing the timedependent density functional theory (TD-DFT) and ZINDO. Band gaps and effective conjugation lengths of the corresponding polymers were obtained by extrapolating HOMO-LUMO gaps and the lowest excitation energies to infinite chain length. The IPs, EAs, and λ abs of the polymers were also obtained by extrapolating those of the oligomers to the inverse chain length equal to zero (1/n ) 0). For PFDBO, IPs and EAs are higher and the band gap is larger than those of PF's from the extrapolation. The outcome shows that the dramatically twisted structure of PFDBO in the seven-membered ring results in the decreased conjugation in the chain. These cause both the maximal absorption and emission wavelengths of PFDBO blue shift compared with PF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.