Recent text generation methods frequently learn node representations from graph‐based data via global or local aggregation, such as knowledge graphs. Since all nodes are connected directly, node global representation encoding enables direct communication between two distant nodes while disregarding graph topology. Node local representation encoding, which captures the graph structure, considers the connections between nearby nodes but misses out onlong‐range relations. A quantum‐like approach to learning better‐contextualised node embeddings is proposed using a fusion model that combines both encoding strategies. Our methods significantly improve on two graph‐to‐text datasets compared to state‐of‐the‐art models in various experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.