The tall clouds that comprise tropical storms, hurricanes, and typhoons—or more generally, tropical cyclones (TCs)—are highly effective at trapping the infrared radiation welling up from the surface. This cloud–infrared radiation feedback, referred to as the “cloud greenhouse effect,” locally warms the lower–middle troposphere relative to a TC’s surroundings through all stages of its life cycle. Here, we show that this effect is essential to promoting and accelerating TC development in the context of two archetypal storms—Super Typhoon Haiyan (2013) and Hurricane Maria (2017). Namely, this feedback strengthens the thermally direct transverse circulation of the developing storm, in turn both promoting saturation within its core and accelerating the spin-up of its surface tangential circulation through angular momentum convergence. This feedback therefore shortens the storm’s gestation period prior to its rapid intensification into a strong hurricane or typhoon. Further research into this subject holds the potential for key progress in TC prediction, which remains a critical societal challenge.
This work examines the impacts of the diurnal radiation contrast on the contraction rate of the radius of maximum wind (RMW) during intensification of Hurricane Edouard (2014) through convection-permitting simulations. Rapid contraction of RMW occurs both in the low and midlevels for the control run and the sensitivity run without solar insolation, while the tropical cyclone contracts more slowly in the low levels and later in the midlevels and thereafter fails to intensify continuously in the absence of the night phase, under weak vertical wind shear (~4 m s−1). The clouds at the top of the boundary layer absorb solar shortwave heating during the daytime, which enhanced the temperature inversion there and increased the convective inhibition, while nighttime destabilization and moistening in low levels through radiative cooling decrease convective inhibition and favor more convection inside the RMW than in the daytime phase. The budget analysis of the tangential wind tendency reveals that the greater positive radial vorticity flux inside of the RMW is the key RMW contraction mechanism in the boundary layer at night because of the enhanced convection. However, the greater positive vertical advection of tangential wind inside of the RMW dominates the RMW contraction in the midlevels.
This work examines the impacts of the diurnally varying radiation cycle on the formation, intensity, structure, and track of Hurricane Edouard (2014) at different stages of its life cycle through convection-permitting simulations. During the formation stage, nighttime destabilization through radiative cooling may promote deep moist convection that eventually leads to the genesis of the storm, while a tropical cyclone fails to develop in the absence of the night phase despite a strong incipient vortex under moderately strong vertical wind shear. The nighttime radiative cooling further enhances the primary vortex before the storm undergoes rapid intensification. Thereafter, the nighttime radiative cooling mainly increases convective activities outside of the primary eyewall that lead to stronger/broader rainbands and larger storm size during the mature stage of the hurricane; there is, however, less impact on the hurricane’s peak intensity in terms of maximum 10-m surface wind speed. The control forecast undergoes distinct secondary eyewall formation during the mature stage of Edouard (as observed), while there is no apparent eyewall replacement cycle as simulated in sensitivity experiments without solar insolation and the moat is narrower in those with switch-on solar insolation at night, suggesting the potential role of the diurnally varying radiative impact.
[1] In this study, a series of model output diagnoses using the cloud-resolving simulations of Typhoon Nari (2001) with or without Taiwan topography is performed to gain insight into the landfall characteristics of the storm as it moves across Taiwan Island. Various kinematic and precipitation features prior to and after landfall are examined with a focus on the dynamic effects of Taiwan's high topography upon the generation of Nari's asymmetric structures. Results show that tangential winds weaken, whereas the low-level inflows and midlevel outflows increase, after landfall due to the increased friction and terrain blocking. Meanwhile, the eye wall updrafts exhibit more cellular structures and tend to tilt more outward with height over the high topography. However, Nari's primary and secondary circulations are stronger in the presence of terrain than those without terrain. The radii of the maximum winds and the eye wall updrafts could contract further after landfall, with more pronounced contraction occurring in the portion of the eye wall where more terrain retardation and blocking are present. In particular, the high topography allows the elevated low equivalent potential temperature ( e ) air over the rugged terrain to intrude into the inner core region, causing the breakdown of the eye wall. It is concluded that the interaction of Nari's circulations with the elevated low-e air, combined with topographical effects, accounts for most of the asymmetrical structures after landfall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.