Fast-response and high-sensitivity deep-ultraviolet (DUV) photodetectors with detection wavelength shorter than 320 nm are in high demand due to their potential applications in diverse fields. However, the fabrication processes of DUV detectors based on traditional semiconductor thin films are complicated and costly. Here we report a high-performance DUV photodetector based on graphene quantum dots (GQDs) fabricated via a facile solution process. The devices are capable of detecting DUV light with wavelength as short as 254 nm. With the aid of an asymmetric electrode structure, the device performance could be significantly improved. An on/off ratio of ∼6000 under 254 nm illumination at a relatively weak light intensity of 42 μW cm(-2) is achieved. The devices also exhibit excellent stability and reproducibility with a fast response speed. Given the solution-processing capability of the devices and extraordinary properties of GQDs, the use of GQDs will open up unique opportunities for future high-performance, low-cost DUV photodetectors.
We examine the effects of disorder on propagation loss as a function of group velocity for W1 photonic crystal (PhC) waveguides. Disorder is deliberately and controllably introduced into the photonic crystal by pseudo-randomly displacing the holes of the photonic lattice. This allows us to clearly distinguish two types of loss. Away from the band-edge and for moderately slow light (group velocity c/20-c/30) loss scales sub-linearly with group velocity, whereas near the band-edge, reflection loss increases dramatically due to the random and local shift of the band-edge. The optical analysis also shows that the random fabrication errors of our structures, made on a standard e-beam lithography system, are below 1 nm root mean square.
We show numerically that both coherent perfect absorption and transparency can be realized in a monolayer graphene. The graphene film, doped and patterned with a periodical array of holes, can support plasmonic resonances in the Mid-infrared range. Under the illumination of two counter-propagating coherent optical beams, resonant optical absorption may be tuned continuously from 99.93% to less than 0.01% by controlling their relative phase which gives a modulation contrast of 40 dB (about 30 dB for transmission). The phenomenon provides a versatile platform for manipulating the interaction between light and graphene and may serve applications in optical modulators, transducers, sensors and coherent detectors.
Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.