Rubidium (Rb) is explored as an alternative cation to use in a novel multication method with the formamidinium/methylammonium/cesium (Cs) system to obtain 1.73 eV bangap perovskite cells with negligible hysteresis and steady state efficiency as high as 17.4%. The study shows the beneficial effect of Rb in improving the crystallinity and suppressing defect migration in the perovskite material. The light stability of the cells examined under continuous illumination of 12 h is improved upon the addition of Cs and Rb. After several cycles of 12 h light–dark, the cell retains 90% of its initial efficiency. In parallel, sputtered transparent conducting oxide thin films are developed to be used as both rear and front transparent contacts on quartz substrate with less than 5% parasitic absorption of near infrared wavelengths. Using these developments, semi‐transparent perovskite cells are fabricated with steady state efficiency of up to 16.0% and excellent average transparency of ≈84% between 720 and 1100 nm. In a tandem configuration using a 23.9% silicon cell, 26.4% efficiency (10.4% from the silicon cell) in a mechanically stacked tandem configuration is demonstrated which is very close to the current record for a single junction silicon cell of 26.6%.
We present a systematic procedure for designing "flat bands" of photonic crystal waveguides for slow light propagation. The procedure aims to maximize the group index - bandwidth product by changing the position of the first two rows of holes of W1 line defect photonic crystal waveguides. A nearly constant group index - bandwidth product is achieved for group indices of 30-90 and as an example, we experimentally demonstrate flat band slow light with nearly constant group indices of 32.5, 44 and 49 over 14 nm, 11 nm and 9.5 nm bandwidth around 1550 nm, respectively.
Slow light has attracted significant interest recently as a potential solution for optical delay lines and time-domain optical signal processing 1,2. Perhaps even more significant is the possibility of dramatically enhancing nonlinear optical effects 3,4 due to the spatial compression of optical energy 5,6,7. Two-dimensional (2D) silicon photonic crystal (PhC) waveguides have proven to be a powerful platform for realizing slow light, being compatible with on-chip integration and offering wide-bandwidth and dispersion-free propagation 2. Here, we report the slow light enhancement of a nonlinear optical process in a 2D silicon PhC waveguide. We observe visible third-harmonic generation (THG) at a wavelength of 520nm with only a few watts of peak power, and demonstrate strong THG enhancement due to the reduced group velocity of the near-infrared pump signal. This demonstrates yet another unexpected nonlinear function realized in a CMOS-compatible silicon waveguide. Main text Although silicon has been the material of choice for the CMOS industry and more recently for integrated photonics, its optical properties-e.g light emission-still provide major challenges. In addition to an indirect band-gap and inversion symmetry,
The performance of state-of-the-art perovskite solar cells is currently limited by defectinduced recombination at interfaces between the perovskite and the electron and hole transport layers. These defects, most likely under-coordinated Pb and halide ions, must either be removed or passivated if cell efficiencies are to approach their theoretical limit. In this work, we introduce a universal double-side polymer passivation approach using ultrathin poly(methyl methacrylate) (PMMA) films. We demonstrate very high-efficiency (~20.8%) perovskite cells with some of the highest open circuit voltages (1.22 V) reported for the same 1.6 eV bandgap. Photoluminescence imaging and transient spectroscopic measurements confirm a significant reduction in non-radiative recombination in the passivated cells, consistent with the voltage increase. Analysis of the molecular interactions between Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff))
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.