The effect of edge-functionalization on the competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons (NPCs) has been investigated for the first time by combining density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulation. Our results show that edge-functionalization has a more positive effect on the single-component adsorption of CO2 than CH4, therefore significantly enhancing the selectivity of CO2 over CH4, in the order of NH2-NPC > COOH-NPC > OH-NPC > H-NPC > NPC at low pressure. The enhanced adsorption originates essentially from the effects of (1) the conducive environment with a large pore size and an effective accessible surface area, (2) the high electronegativity/electropositivity, (3) the strong adsorption energy, and (4) the large electrostatic contribution, due to the inductive effect/direct interaction of the embedded edge-functionalized groups. The larger difference from these effects results in the higher competitive adsorption advantage of CO2 in the binary CO2-CH4 mixture. Temperature has a negative effect on the gas adsorption, but no obvious influence on the electrostatic contribution on selectivity. With the increase of pressure, the selectivity of CO2 over CH4 first decreases sharply and subsequently flattens out to a constant value. This work highlights the potential of edge-functionalized NPCs in competitive adsorption, capture, and separation for the binary CO2-CH4 mixture, and provides an effective and superior alternative strategy in the design and screening of adsorbent materials for carbon capture and storage.
The effects of chemical and structural surface heterogeneity on the CH4 adsorption behaviour on microporous carbons have been investigated using a hybrid theoretical approach, including the use of density functional theory (DFT), molecular dynamics (MD), and grand canonical Monte Carlo (GCMC) simulations. Bader charge analysis is first performed to analyze the surface atomic partial charges. The CH4 adsorption densities in defective and functionalized graphite slit pores are lower than that in the perfect pore according to the MD simulations. Finally, the CH4 adsorption isotherms for the perfect, defective and functionalized slit pores are analyzed using the GCMC simulations in combination with the DFT and MD results. For pores with a defective surface, the adsorption capacities decrease; the embedded functional groups decrease the adsorption capacity at low pressure and enhance it at high pressure. Our results demonstrate the significant effects of chemical and structural surface heterogeneity on the CH4 adsorption and provide a systematic approach to understand the gas adsorption behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.