High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.
Urine metabolomics have been used to identify biomarkers for clinical diseases. However, inter-individual variations and effect factors need to be further evaluated. In our study, we explored the urine metabolome in a cohort of 203 health adults, 6 patients with benign bladder lesions, and 53 patients with bladder cancer (BCa) using liquid chromatography coupled with high resolution mass spectrometry. Inter-individual analysis of both healthy controls and BCa patients showed that the urine metabolome was relatively stable. Further analysis indicated that sex and age affect inter-individual variations in urine metabolome. Metabolic pathways such as tryptophan metabolism, the citrate cycle, and pantothenate and CoA biosynthesis were found to be related to sex and age. To eliminate age and sex interference, additional BCa urine metabolomic biomarkers were explored using age and sex-matched urine samples (Test group: 44 health adults vs. 33 patients with BCa). Metabolic profiling of urine could significantly differentiate the cases with cancer from the controls and high-grade from low-grade BCa. A metabolite panel consisting of trans-2-dodecenoylcarnitine, serinyl-valine, feruloyl-2-hydroxyputrescine, and 3-hydroxynonanoyl carnitine were discovered to have good predictive ability for BCa with an area under the curve (AUC) of 0.956 (cross validation: AUC = 0.924). A panel of indolylacryloylglycine, N -galacturonyl-L-lysine, and aspartyl-glutamate was used to establish a robust model for high- and low-grade BCa distinction with AUC of 0.937 (cross validation: AUC = 0.891). External sample (26 control vs. 20 BCa) validation verified the acceptable accuracy of these models for BCa detection. Our study showed that urinary metabolomics is a useful strategy for differential analysis and biomarker discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.