BackgroundBacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy.Methodology/Principal FindingsThe purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence.Conclusions/SignificanceWe identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.
BackgroundInfections by pan-drug resistant Acinetobacter baumannii plague military and civilian healthcare systems. Previous A. baumannii pan-genomic studies used modest sample sizes of low diversity and comparisons to a single reference genome, limiting our understanding of gene order and content. A consensus representation of multiple genomes will provide a better framework for comparison. A large-scale comparative study will identify genomic determinants associated with their diversity and adaptation as a successful pathogen.ResultsWe determine draft-level genomic sequence of 50 diverse military isolates and conduct the largest bacterial pan-genome analysis of 249 genomes. The pan-genome of A. baumannii is open when the input genomes are normalized for diversity with 1867 core proteins and a paralog-collapsed pan-genome size of 11,694 proteins. We developed a novel graph-based algorithm and use it to assemble the first consensus pan-chromosome, identifying both the order and orientation of core genes and flexible genomic regions. Comparative genome analyses demonstrate the existence of novel resistance islands and isolates with increased numbers of resistance island insertions over time, from single insertions in the 1950s to triple insertions in 2011. Gene clusters responsible for carbon utilization, siderophore production, and pilus assembly demonstrate frequent gain or loss among isolates.ConclusionsThe highly variable and dynamic nature of the A. baumannii genome may be the result of its success in rapidly adapting to both abiotic and biotic environments through the gain and loss of gene clusters controlling fitness. Importantly, some archaic adaptation mechanisms appear to have reemerged among recent isolates.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-015-0701-6) contains supplementary material, which is available to authorized users.
Salmonella serovars are associated with human diseases that range from mild gastroenteritis to hostdisseminated enteric fever. Human infections by Salmonella enterica serovar Typhi can lead to typhoid fever, but this serovar does not typically cause disease in mice or other animals. In contrast, S. enterica serovar Typhimurium and S. enterica serovar Enteritidis, which are usually linked to localized gastroenteritis in humans and some animal species, elicit a systemic infection in mice. To better understand these observations, multiple strains of each of several chosen serovars of Salmonella were tested for the ability in the nonopsonized state to enter, survive, and replicate within human macrophage cells (U937 and elutriated primary cells) compared with murine macrophage cells (J774A.1 and primary peritoneal cells); in addition, death of the infected macrophages was monitored. The serovar Typhimurium strains all demonstrated enhanced survival within J774A.1 cells and murine peritoneal macrophages, compared with the significant, almost 100-fold declines in viable counts noted for serovar Typhi strains. Viable counts for serovar Enteritidis either matched the level of serovar Typhi (J774A.1 macrophages) or were comparable to counts for serovar Typhimurium (murine peritoneal macrophages). Apoptosis was significantly higher in J774A.1 cells infected with serovar Typhimurium strain LT2 compared to serovar Typhi strain Ty2. On the other hand, serovar Typhi survived at a level up to 100-fold higher in elutriated human macrophages and 2-to 3-fold higher in U937 cells compared to the serovar Typhimurium and Enteritidis strains tested. Despite the differential multiplication of serovar Typhi during infection of U937 cells, serovar Typhi caused significantly less apoptosis than infections with serovar Typhimurium. These observations indicate variability in intramacrophage survival and host cytotoxicity among the various serovars and are the first to show differences in the apoptotic response of distinct Salmonella serovars residing in human macrophage cells. These studies suggest that nonopsonized serovar Typhimurium enters, multiplies within, and causes considerable, acute death of macrophages, leading to a highly virulent infection in mice (resulting in death within 14 days). In striking contrast, nonopsonized serovar Typhi survives silently and chronically within human macrophages, causing little cell death, which allows for intrahost dissemination and typhoid fever (low host mortality). The type of disease associated with any particular serovar of Salmonella is linked to the ability of that serovar both to persist within and to elicit damage in a specific host's macrophage cells.
The pH 6 antigen (pH 6 Ag; PsaA) of Yersinia pestis has been shown to be a virulence factor. In this study, we set out to investigate the possible function of Y. pestis PsaA in a host cell line, RAW264.7 mouse macrophages, in order to better understand the role it might play in virulence. Y. pestis KIM5 derivatives with and without the pCD1 plasmid and their psaA isogenic counterparts and Escherichia coli HB101 and D⌯5␣ carrying a psaA clone or a vector control were used for macrophage infections. Macrophage-related bacteria and gentamicin-resistant intracellular bacteria generated from plate counting and direct microscopic examinations were used to evaluate these RAW264.7 macrophage infections. Y. pestis psaA isogenic strains did not show any significant difference in their abilities to associate with or bind to mouse macrophage cells. However, expression of psaA appeared to significantly reduce phagocytosis of both Y. pestis and E. coli by mouse macrophages (P < 0.05). Furthermore, we found that complementation of psaA mutant Y. pestis strains could completely restore the ability of the bacteria to resist phagocytosis. Fluorescence microscopy following differential labeling of intracellular and extracellular Y. pestis revealed that significantly lower numbers of psaA-expressing bacteria were located inside the macrophages. Enhanced phagocytosis resistance was specific for bacteria expressing psaA and did not influence the ability of the macrophages to engulf other bacteria. Our data demonstrate that Y. pestis pH 6 Ag does not enhance adhesion to mouse macrophages but rather promotes resistance to phagocytosis.
Colonization with gram-negative MDROs is common among patients with war-related trauma admitted to a military hospital and also occurs among nondeployed patients with recent healthcare contact. The groin is the most sensitive anatomic site for active surveillance, and spontaneous decolonization is rare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.