Sirtuin deacetylases and FOXO (Forkhead box, class O) transcription factors have important roles in many biological pathways, including cancer development. SIRT1 and SIRT2 deacetylate FOXO factors to regulate FOXO function. Because acetylation and ubiquitination both modify the e-amino group of lysine residues, we investigated whether FOXO3 deacetylation by SIRT1 or SIRT2 facilitates FOXO3 ubiquitination and subsequent proteasomal degradation. We found that SIRT1 and SIRT2 promote FOXO3 poly-ubiquitination and degradation. Proteasome-inhibitor treatment prevented sirtuininduced FOXO3 degradation, indicating that this process is proteasome dependent. In addition, we demonstrated that E3 ubiquitin ligase subunit Skp2 binds preferentially to deacetylated FOXO3. Overexpression of Skp2 caused poly-ubiquitination of FOXO3 and degradation, whereas knockdown of Skp2 increased the amount of FOXO3 protein. We also present evidence that SCF-Skp2 ubiquitinates FOXO3 directly in vitro. Furthermore, mutating four known acetylated lysine residues (K242, K259, K290 and K569) of FOXO3 into arginines to mimic deacetylated FOXO3 resulted in enhanced Skp2 binding but with inhibition of FOXO3 ubiquitination; this suggests that some or all of these four lysine residues are likely the sites for ubiquitination. In the livers of mice deficient in SIRT1, we detected increased expression of FOXO3, indicating SIRT1 regulates FOXO3 protein levels in vivo. Furthermore, we found that the elevation of SIRT1 and Skp2 expression in malignant PC3 and DU145 prostate cells is responsible for the downregulation of FOXO3 protein levels in these cells. Taken together, our data support the notion that deacetylation of FOXO3 by SIRT1 or SIRT2 facilitates Skp2-mediated FOXO3 poly-ubiquitination and proteasomal degradation.
Glucagon-like peptide 2 (GLP-2) is a gut hormone that stimulates mucosal growth in total parenteral nutrition (TPN)-fed piglets; however, the dose-dependent effects on apoptosis, cell proliferation, and protein synthesis are unknown. We studied 38 TPN-fed neonatal piglets infused iv with either saline or GLP-2 at three rates (2.5, 5.0, and 10.0 nmol.kg(-1).d(-1)) for 7 d. Plasma GLP-2 concentrations ranged from 177 +/- 27 to 692 +/- 85 pM in the low- and high-infusion groups, respectively. GLP-2 infusion dose-dependently increased small intestinal weight, DNA and protein content, and villus height; however, stomach protein synthesis was decreased by GLP-2. Intestinal crypt and villus apoptosis decreased and crypt cell number increased linearly with GLP-2 infusion rates, whereas cell proliferation and protein synthesis were stimulated only at the high GLP-2 dose. The intestinal activities of caspase-3 and -6 and active caspase-3 abundance decreased, yet procaspase-3 abundance increased markedly with increasing infusion rate and plasma concentration of GLP-2. The GLP-2-dose-dependent suppression of intestinal apoptosis and caspase-3 activity was associated with increased protein kinase B and glycogen-synthase kinase-3 phosphorylation, yet the expression phosphatidylinositol 3-kinase was unaffected by GLP-2. Intestinal endothelial nitric oxide synthase mRNA and protein expression was increased, but only at the high GLP-2 dose. We conclude that the stimulation of intestinal epithelial survival is concentration dependent at physiological GLP-2 concentrations; however, induction of cell proliferation and protein synthesis is a pharmacological response. Moreover, we show that GLP-2 stimulates intestinal cell survival and proliferation in association with induction of protein kinase B and glycogen-synthase kinase-3 phosphorylation and Bcl-2 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.