The Transformation-Induced-Plasticity (TRIP) effect is used for enhancing the formability of cold formable sheet steels. While the first observation of this phenomenon dates back to the 1930's, the industrial usage of the TRIP steels started after 1950. First fully austenitic steels, later on multiphase steels have been developed with a meta-stable austenitic phase that can transform stress-assisted or strain-induced into eor a 0 -martensite during deformation. The historic development, the principles of the TRIP effect, and the different groups of steels using the TRIP effect are described. For the already commercialized TRIP steels, characteristic chemical compositions and microstructures are discussed; the requirements for the process design as well as new annealing concepts after cold rolling are explained. . Since 2016, he has been working in the Steel Institute of RWTH Aachen University as a scientific researcher. His research topic focuses on the microstructuremechanical properties relationship of high-Mn and medium-Mn steels.
BackgroundAnimal domestication has been extensively studied, but the process of feralization remains poorly understood.ResultsHere, we performed whole-genome sequencing of 99 sheep and identified a primary genetic divergence between 2 heterogeneous populations in the Tibetan Plateau, including 1 semi-feral lineage. Selective sweep and candidate gene analysis revealed local adaptations of these sheep associated with sensory perception, muscle strength, eating habit, mating process, and aggressive behavior. In particular, a horn-related gene, RXFP2, showed signs of rapid evolution specifically in the semi-feral breeds. A unique haplotype and repressed horn-related tissue expression of RXFP2 were correlated with higher horn length, as well as spiral and horizontally extended horn shape.ConclusionsSemi-feralization has an extensive impact on diverse phenotypic traits of sheep. By acquiring features like those of their wild ancestors, semi-feral sheep were able to regain fitness while in frequent contact with wild surroundings and rare human interventions. This study provides a new insight into the evolution of domestic animals when human interventions are no longer dominant.
Background Sheep have developed the ability to store fat in their tails, which is a unique way of reserving energy to survive a harsh environment. However, the mechanism underlying this adaptive trait remains largely unsolved. Results In the present study, we provide evidence for the genetic determinants of fat tails, based on whole genome sequences of 89 individual sheep. A genome-wide scan of selective sweep identified several candidate loci including a region at chromosome 13, a haplotype of which underwent rapid evolution and spread through fat-tailed populations in China and the Middle East. Sequence analysis revealed an inter-genic origin of this locus, which later became a hotspot of ruminant-specific retro-transposon named BovB. Additionally, the candidate locus was validated based on a fat- and thin-tailed cross population. The expression of an upstream gene BMP2 was differentially regulated between fat-tailed and thin-tailed individuals in tail adipose and several other tissue types. Conclusions Our findings suggest the fixation of fat tails in domestic sheep is caused by a selective sweep near a retro-transposable hotspot at chromosome 13, the diversity of which specifically affects the expression of BMP2 . The present study has shed light onto the understanding of fat metabolism. Electronic supplementary material The online version of this article (10.1186/s12864-019-5620-6) contains supplementary material, which is available to authorized users.
The FecB gene has been discovered as an important gene in sheep for its high relationship with the ovulation rate, but its regulatory mechanism remains unknown. In the present study, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were adopted to detect the metabolic effects of FecB gene in follicular fluid (FF) and ovarian vein serum (OVS) in Small Tail Han (STH) sheep. ANOVA and random forest statistical methods were employed for the identification of important metabolic pathways and biomarkers. Changes in amino acid metabolism, redox environment, and energy metabolism were observed in FF from the three FecB genotype STH ewes. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed that metabolic effects of FecB gene are more pronounced in FF than in OVS. Therefore, the difference of the metabolic profile in FF is also affected by the FecB genotypes. In Spearman correlation analysis, key metabolites (e.g., glucose 6-phosphate, glucose 1-phosphate, aspartate, asparagine, glutathione oxidized (GSSG), cysteine-glutathione disulfide, γ-glutamylglutamine, and 2-hydrosybutyrate) in ovine FF samples showed a significant correlation with the ovulation rate. Our findings will help to explain the metabolic mechanism of high prolificacy ewes and benefit fertility identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.