Zeolite-polyamide thin film nanocomposite membranes were coated onto polysulfone ultrafiltration membranes by interfacial polymerization of amine and acid chloride monomers in the presence of Linde type A zeolite nanocrystals. A matrix of three different interfacial polymerization chemistries and three different-sized zeolite crystals produced nanocomposite thin films with widely varying structure, morphology, charge, hydrophilicity, and separation performance (evaluated as reverse osmosis membranes). Pure polyamide film properties were tuned by changing polymerization chemistry, but addition of zeolite nanoparticles produced even greater changes in separation performance, surface chemistry, and film morphology. For fixed polymer chemistry, addition of zeolite nanoparticles formed more permeable, negatively charged, and thicker polyamide films. Smaller zeolites produced greater permeability enhancements, but larger zeolites produced more favorable surface properties; hence, nanoparticle size may be considered an additional "degree of freedom" in designing thin film nanocomposite reverse osmosis membranes. The data presented offer additional support for the hypothesis that zeolite crystals alter polyamide thin film structure when they are present during the interfacial polymerization reaction.
Although silver nanoparticles are being exploited widely in antimicrobial applications, the mechanisms underlying silver nanoparticle antimicrobial properties in environmentally relevant media are not fully understood. The latter point is critical for understanding potential environmental impacts of silver nanoparticles. The aim of this study was to elucidate the influence of inorganic aquatic chemistry on silver nanoparticle stability (aggregation, dissolution, reprecipitation) and bacterial viability. A synthetic "fresh water" matrix was prepared comprising various combinations of cations and anions while maintaining a fixed ionic strength. Aggregation and dissolution of silver nanoparticles was influenced by electrolyte composition; experimentally determined ionic silver concentrations were about half that predicted from a thermodynamic model and about 1000 times lower than the maximum dispersed silver nanoparticle concentration. Antibacterial activity of silver nanoparticles was much lower than Ag(+) ions when compared on the basis of total mass added; however, the actual concentrations of dissolved silver were the same regardless of how silver was introduced. Bacterial inactivation also depended on bacteria cell type (Gram-positive/negative) as well as the hardness and alkalinity of the suspending media. These simple, but systematic studies--enabled by high-throughput screening--reveal the inherent complexity associated with understanding silver nanoparticle antibacterial efficacy as well as potential environmental impacts of silver nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.