BackgroundThe tidal flat is one of the important components of coastal wetland systems in the Yellow River Delta (YRD). It can stabilize shorelines and protect coastal biodiversity. The erosion risk in tidal flats in coastal wetlands was seldom been studied. Characterizing changes of soil particle size distribution (PSD) is an important way to quantity soil erosion in tidal flats.Method/Principal findingsBased on the fractal scale theory and network analysis, we determined the fractal characterizations (singular fractal dimension and multifractal dimension) soil PSD in a successional series of tidal flats in a coastal wetland in the YRD in eastern China. The results showed that the major soil texture was from silt loam to sandy loam. The values of fractal dimensions, ranging from 2.35 to 2.55, decreased from the low tidal flat to the high tidal flat. We also found that the percent of particles with size ranging between 0.4 and 126 μm was related with fractal dimensions. Tide played a great effort on soil PSD than vegetation by increasing soil organic matter (SOM) content and salinity in the coastal wetland in the YRD.Conclusions/SignificanceTidal flats in coastal wetlands in the YRD, especially low tidal flats, are facing the risk of soil erosion. This study will be essential to provide a firm basis for the coast erosion control and assessment, as well as wetland ecosystem restoration.
Aims: The response of microbial metagenome to polycyclic aromatic hydrocarbons (PAHs) degradation in the rice rhizosphere remains poorly understood. We investigated the spatial and temporal variations of microbial communities and reconstructed metagenomes along the rice rhizosphere gradient during PAHs degradation. Methods and Results: The experiment was performed in rhizoboxes, in which the rhizosphere region was divided into five 1-mm thick layers. Based on denaturant gradient gel electrophoresis profiling and sequencing of bacterial and archaeal 16S rRNA genes, predicted metagenomes were reconstructed. The microbial communities in the rice rhizosphere were influenced by the PAHs concentration and distance from the root surface during PAHs degradation. Correlation network analysis showed that archaea played an important role in PAHs degradation. Predicted metagenomes can be clustered into two groups with high and low PAHs degrading potential, respectively. The relative abundance of genes for defense mechanisms, replication, recombination and reparation was significantly higher in samples with high PAHs degrading potentials. The relative abundance of the dioxygenase gene was greater near the root surface of the rice. However, the abundance of aldolase and dehydrogenase was constant in rhizosphere soils at different distances from the root surface. Conclusions: Distance from root surface and PAH concentrations affected the microbial communities and metagenomes in rice rhizosphere. The abundance of dioxygenase genes relating to PAH degradation in metagenomes mirrored the PAH degradation potential in rice rhizosphere. Significance and Impact of the Study: Our findings suggested that the predicted metagenomes reconstructed from 16S rRNA marker gene sequences provide further insights into the spatial variation and dynamics of microbial functioning that occur during bioremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.