The application of Internet of Things promotes the cooperation among firms, and it also introduces some information security issues. Due to the vulnerability of the communication network, firms need to invest in information security technologies to protect their confidential information. In this paper, considering the multiple-step propagation of a security breach in a fully connected network, an information security investment game among n firms is investigated. We make meticulous theoretic and experimental analyses on both the Nash equilibrium solution and the optimal solution. The results show that a larger network size (n) or a larger one-step propagation probability (q) has a negative effect on the Nash equilibrium investment. The optimal investment does not necessarily increase in n or q, and its variation trend depends on the concrete conditions. A compensation mechanism is proposed to encourage firms to coordinate their strategies and invest a higher amount equal to the optimal investment when they make decisions individually. At last, our model is extended by considering another direct breach probability function and another network structure, respectively. We find that a higher connection density of the network will result in a greater expected cost for each firm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.