Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells. CFO–BTO core–shell MENPs have a relatively high magnetoelectric coefficient and have been proposed for direct magnetic particle imaging (MPI) of brain electrophysiology. However, the feasibility of acquiring such readouts has not been demonstrated or methodically quantified. Here we present the results of implementing a strain-based finite element magnetoelectric model of CFO–BTO core–shell MENPs and apply the model to quantify magnetization in response to neural electric fields. We use the model to determine optimal MENPs-mediated electrophysiological readouts both at the single neuron level and for MENPs diffusing in bulk neural tissue for in vivo scenarios. Our results lay the groundwork for MENP recording of electrophysiological signals and provide a broad analytical infrastructure to validate MENPs for biomedical applications.
The widespread use of fluorescence microscopy has prompted the ongoing development of tools aiming to improve resolution and quantification accuracy for study of biological questions. Current calibration and quantification tools for fluorescence images face issues with usability/user experience, lack of automation, and comprehensive multidimensional measurement/correction capabilities. Here, we developed 3D-Speckler, a versatile, and high-throughput image analysis software that can provide fluorescent puncta quantification measurements such as 2D/3D particle size, spatial location/orientation, and intensities through semi-automation in a single, user-friendly interface. Integrated analysis options such as 2D/3D local background correction, chromatic aberration correction, and particle matching/filtering are also encompassed for improved precision and accuracy. We demonstrate 3D-Speckler microscope calibration capabilities by determining the chromatic aberrations, field illumination uniformity, and response to nanometer-scale emitters above and below the diffraction limit of our imaging system using multispectral beads. Furthermore, we demonstrated 3D-Speckler quantitative capabilities for offering insight into protein architectures and composition in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.