We study a one-dimensional plasmonic system with nontrivial topology: a chain of metallic nanoparticles with alternating spacing, which in the limit of small particles is the plasmonic analogue to the Su-Schrieffer-Heeger model. Unlike prior studies we take into account long-range hopping with retardation and radiative damping, which is necessary for the scales commonly used in plasmonics experiments. This leads to a non-Hermitian Hamiltonian with frequency dependence that is notably not a perturbation of the quasistatic model. We show that the resulting band structures are significantly different, but that topological features such as quantized Zak phase and protected edge modes persist because the system has the same eigenmodes as a chirally symmetric system. We discover the existence of retardation-induced topological phase transitions, which are not predicted in the SSH model. We find parameters that lead to protected edge modes and confirm that they are highly robust under disorder, opening up the possibility of protected hotspots at topological interfaces that could have novel applications in nanophotonics. KEYWORDS: plasmonics, surface plasmons, topological insulator, edge states, hotspots, disorder, nanoparticle array P lasmonic systems take advantage of subwavelength field confinement and the resulting enhancement to create hotspots, with applications in medical diagnostics, sensing and metamaterials.1,2 Arrays of metallic nanoparticles support surface plasmons that delocalize over the structure and whose properties can be manipulated by tuning the dimensions of the particles and their spacing.3−6 In particular, 1D and 2D arrays have significant uses in band-edge lasing 7,8 and can be made to strongly interact with emitters.9,10 Configurations of nanoparticle dimers have been shown to exhibit interesting physical properties;11 in the following we consider a nanoparticle dimer array in the context of topological photonics.The rise of topological insulators, materials with an insulating bulk and conducting surface states that are protected from disorder, has inspired the study of analogous photonic and plasmonic systems.12−23 Topological photonics shows exciting potential for unidirectional plasmonic waveguides, 24 lasing, 25 and field enhancing hotspots with robust topological protection, which could prove useful for nanoparticle arrays on flexible substrates. 26 Plasmonic and photonic systems provide a powerful platform to examine topological insulators without the complication of interacting particles and with interesting additional properties like non-Hermiticity.27−32 The lack of Fermi level simplifies the excitation of states, and the tunability made available by the larger scale allows for the study of disorder and defects in greater depth than electronic systems.33−35 They also simplify the study of topology in finite systems. 36One of the simplest topologically nontrivial models is that of Su, Schrieffer, and Heeger (SSH), 37,38 which features a chain of atoms with staggered hoppin...
Graphene has emerged as a promising material for optoelectronics due to its potential for ultrafast and broad-band photodetection. The photoresponse of graphene junctions is characterized by two competing photocurrent generation mechanisms: a conventional photovoltaic effect and a more dominant hot-carrier-assisted photothermoelectric (PTE) effect. The PTE effect is understood to rely on variations in the Seebeck coefficient through the graphene doping profile. A second PTE effect can occur across a homogeneous graphene channel in the presence of an electronic temperature gradient. Here, we study the latter effect facilitated by strongly localised plasmonic heating of graphene carriers in the presence of nanostructured electrical contacts resulting in electronic temperatures of the order of 2000 K. At certain conditions, the plasmon-induced PTE photocurrent contribution can be isolated. In this regime, the device effectively operates as a sensitive electronic thermometer and as such represents an enabling technology for development of hot carrier based plasmonic devices.
The design of achromatic optical components requires materials with high transparency and low dispersion. We show that although metals are highly opaque, densely packed arrays of metallic nanoparticles can be more transparent to infrared radiation than dielectrics such as germanium, even when the arrays are over 75% metal by volume. Such arrays form effective dielectrics that are virtually dispersion-free over ultra-broadband ranges of wavelengths from microns up to millimeters or more. Furthermore, the local refractive indices may be tuned by altering the size, shape, and spacing of the nanoparticles, allowing the design of gradient-index lenses that guide and focus light on the microscale. The electric field is also strongly concentrated in the gaps between the metallic nanoparticles, and the simultaneous focusing and squeezing of the electric field produces strong ‘doubly-enhanced’ hotspots which could boost measurements made using infrared spectroscopy and other non-linear processes over a broad range of frequencies.
Complementing the research of surface plasmon polariton vortices for Archimedean spiral structures grooved in gold platelets, we here study the analogous positive structure of an Archimedean spiral consisting of bent gold nanorods. We consider spirals of two different sizes, for which we perform numerical calculations with the boundary element method. For a micrometer-sized metallic structure we show that the scattered electric field forms a vortex in the centre of the spiral. When the spiral is illuminated by orbital angular momentum light, the topological charge of the vortex can be controlled. For a nanometer-sized plasmonic Archimedean spiral we find that the response to optical excitation is governed by several resonances. When the nanostructure is excited by orbital angular momentum light, different resonances appear compared to the excitation with plane waves. Our results highlight that the distinct architecture of the Archimedean spiral responds in a unique way to the excitation with orbital angular momentum light.
Rapid progress in nonlinear plasmonic metasurfaces enabled many novel optical characteristics for metasurfaces, with potential applications in frequency metrology [Zimmermann et al. Opt. Lett. 29:310 (2004)], timing characterization [Singh et al. Laser Photonics Rev. 14:1 (2020)] and quantum information [Kues et al. Nature. 546:622 (2017)]. However, the spectrum of nonlinear optical response was typically determined from the linear optical resonance. In this work, a wavelength-multiplexed nonlinear plasmon-MoS2 hybrid metasurface with suppression phenomenon was proposed, where multiple nonlinear signals could to be simultaneously processed and optionally tuned. A clear physical picture to depict the nonlinear plasmonic bound states in the continuum (BICs) was presented, from the perspective of both classical and quantum approaches. Particularly, beyond the ordinary plasmon-polariton effect, we numerically demonstrated a giant BIC-inspired second-order nonlinear susceptibility 10−5 m/V of MoS2 in the infrared band. The novelty in our study lies in the presence of a quantum oscillator that can be adopted to both suppress and enhance the nonlinear quasi BICs. This selectable nonlinear BIC-based suppression and enhancement effect can optionally block undesired modes, resulting in narrower linewidth as well as smaller quantum decay rates, which is also promising in slow-light-associated technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.