Eukaryotic genomes are generally organized in multiple chromosomes. Here we have created a functional single-chromosome yeast from a Saccharomyces cerevisiae haploid cell containing sixteen linear chromosomes, by successive end-to-end chromosome fusions and centromere deletions. The fusion of sixteen native linear chromosomes into a single chromosome results in marked changes to the global three-dimensional structure of the chromosome due to the loss of all centromere-associated inter-chromosomal interactions, most telomere-associated inter-chromosomal interactions and 67.4% of intra-chromosomal interactions. However, the single-chromosome and wild-type yeast cells have nearly identical transcriptome and similar phenome profiles. The giant single chromosome can support cell life, although this strain shows reduced growth across environments, competitiveness, gamete production and viability. This synthetic biology study demonstrates an approach to exploration of eukaryote evolution with respect to chromosome structure and function.
BackgroundSillaginidae, also known as smelt-whitings, is a family of benthic coastal marine fishes in the Indo-West Pacific that have high ecological and economic importance. Many Sillaginidae species, including the Chinese sillago (Sillago sinica), have been recently described in China, providing valuable material to analyze genetic diversification of the family Sillaginidae. Here, we constructed a reference genome for the Chinese sillago, with the aim to set up a platform for comparative analysis of all species in this family.FindingsUsing the single-molecule real-time DNA sequencing platform Pacific Biosciences (PacBio) Sequel, we generated ∼27.3 Gb genomic DNA sequences for the Chinese sillago. We reconstructed a genome assembly of 534 Mb using a strategy that takes advantage of complementary strengths of two genome assembly programs, Canu and FALCON. The genome size was consistent with the estimated genome size based on k-mer analysis. The assembled genome consisted of 802 contigs with a contig N50 length of 2.6 Mb. We annotated 22,122 protein-coding genes in the Chinese sillago genomes using a de novo method as well as RNA sequencing data and homologies to other teleosts. According to the phylogenetic analysis using protein-coding genes, the Chinese sillago is closely related to Larimichthys crocea and Dicentrarchus labrax and diverged from their ancestor around 69.5–82.6 million years ago.ConclusionsUsing long reads generated with PacBio sequencing technology, we have built a draft genome assembly for the Chinese sillago, which is the first reference genome for Sillaginidae species. This genome assembly sets a stage for comparative analysis of the diversification and adaptation of fishes in Sillaginidae.
Background Miscanthus × giganteus is widely recognized as a promising lignocellulosic biomass crop due to its advantages of high biomass production, low environmental impacts, and the potential to be cultivated on marginal land. However, the high costs of bioethanol production still limit the current commercialization of lignocellulosic bioethanol. The lignin in the cell wall and its by-products released in the pretreatment step is the main component inhibiting the enzymatic reactions in the saccharification and fermentation processes. Hence, genetic modification of the genes involved in lignin biosynthesis could be a feasible strategy to overcome this barrier by manipulating the lignin content and composition of M. × giganteus. For this purpose, the essential knowledge of these genes and understanding the underlying regulatory mechanisms in M. × giganteus is required. Results In this study, MgPAL1, MgPAL5, Mg4CL1, Mg4CL3, MgHCT1, MgHCT2, MgC3′H1, MgCCoAOMT1, MgCCoAOMT3, MgCCR1, MgCCR2, MgF5H, MgCOMT, and MgCAD were identified as the major monolignol biosynthetic genes in M. × giganteus based on genetic and transcriptional evidence. Among them, 12 genes were cloned and sequenced. By combining transcription factor binding site prediction and expression correlation analysis, MYB46, MYB61, MYB63, WRKY24, WRKY35, WRKY12, ERF021, ERF058, and ERF017 were inferred to regulate the expression of these genes directly. On the basis of these results, an integrated model was summarized to depict the monolignol biosynthesis pathway and the underlying regulatory mechanism in M. × giganteus. Conclusions This study provides a list of potential gene targets for genetic improvement of lignocellulosic biomass quality of M. × giganteus, and reveals the genetic, transcriptional, and regulatory landscape of the monolignol biosynthesis pathway in M. × giganteus.
The regeneration from embryogenic callus of higher plants in tissue culture is regulated by explants types and developmental stage and also regulated by some genes. In Miscanthus lutarioriparius, five candidate genes were selected to decide the differential expression between embryogenic and non-embryogenic calli, including MlARF-GEP (guanine nucleotide-exchange protein of ADP ribosylation factor), MlKHCP (kinesin heavy chain like protein), MlSERK1 (somatic embryogenesis receptor-like kinases 1), MlSERK2 (somatic embryogenesis reportor-like kinases 2), and MlTypA (tyrosine phosphorylation protein A) with Genbank accession numbers KU640196–KU640200. Multiple sequence alignment analysis showed that five genes were highly conserved among members of their gene families respectively. Phylogenetic relationship analysis showed that five genes were closest with homologous genes of Zea mays and Sorghum. The qRT-PCR results showed significant differences of five genes expression pattern between two different callus types, the relative expression in embryogenic callus was detected to exceed in non-embryogenic callus. Furthermore, simple sequence repeats (SSR) marker statistics results via Chi-square showed a significant correlation between MlSERK1 genotype and induction of embryogenic callus in M. lutarioriparius. This study may lay the foundation of the molecular mechanism on the embryogenic callus induction of M. lutarioriparius and perhaps provide some gist for further study on genetic manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.