Accumulating evidence suggests that radiation treatment causes an adaptive response of lung adenocarcinoma (LUAD), which in turn attenuates the lethal effect of the irradiation. Previous microarray assays manifested the change of gene expression profile after irradiation. Bioinformatics analysis of the significantly changed genes revealed that VANGL1 may notably influence the effect of radiation on LUAD. To determine the role of VANGL1, this study knocked down or overexpressed VANGL1 in LUAD. M6A level of VANGL1 mRNA was determined by M6A-IP-qPCR assay. Irradiation caused the up-regulation of VANGL1 with the increase of VANGL1 m6A level. Depletion of m6A readers, IGF2BP2/3, undermined VANGL1 mRNA stability and expression upon irradiation. miR-29b-3p expression was decreased by irradiation, however VANGL1 is a target of miR-29b-3p which was identified by Luciferase report assay. The reduction of miR-29b-3p inhibited the degradation of VANGL1 mRNA. Knockdown of VANGL1 enhanced the detrimental effect of irradiation on LUAD, as indicated by more severe DNA damage and increased percentage of apoptotic cells. Immunocoprecipitation revealed the interaction between VANGL1 with BRAF. VANGL1 increased BRAF probably through suppressing the protein degradation, which led to the increase of BRAF downstream effectors, TP53BP1 and RAD51. These effectors are involved in DNA repair after the damage. In summary, irradiation caused the up-regulation of VANGL1, which, in turn, mitigated the detrimental effect of irradiation on LUAD by protecting DNA from damage probably through activating BRAF/TP53BP1/RAD51 cascades. Increased m6A level of VANGL1 and reduced miR-29b-3p took the responsibility of VANGL1 overexpression upon irradiation.
Background
Radioresistance of some non‐small cell lung cancer (NSCLC) types increases the risk of recurrence or metastasis in afflicted patients, following radiotherapy. As such, further improvements to NSCLC radiotherapy are needed. The expression of oncogene TP53‐regulated inhibitor of apoptosis 1 (TRIAP1) in NSCLC is increased following irradiation. Furthermore, gene set enrichment analysis (GSEA) has suggested that TRIAP1 might be involved in maintaining redox homeostasis. This in turn might enhance cell radioresistance.
Methods
In this study we irradiated human NSCLC cell lines (A549 and H460), while knocking down TRIAP1, to determine whether a disrupted redox homeostasis could attenuate radioresistance.
Results
Irradiation notably increased both mRNA and protein levels of TRIAP1. In addition, TRIAP1 knockdown decreased the expression of several antioxidant proteins, including thioredoxin‐related transmembrane protein (TMX) 1, TMX2, thioredoxin (TXN), glutaredoxin (GLRX) 2, GLRX3, peroxiredoxin (PRDX) 3, PRDX4, and PRDX6 in A549 and H460 cells. In addition, silencing TRIAP1 impaired the radiation‐induced increase of the aforementioned proteins. Continuing along this line, we observed a radiation‐induced reduction of cell viability and invasion, as well as increased apoptosis and intracellular reactive oxygen species following TRIAP1 knockdown.
Conclusions
In summary, we identified TRIAP1 as a key contributor to the radioresistance of NSCLC by maintaining redox homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.