The emergence of Vehicular Ad Hoc Networks (VANETs) is expected to be an important step toward achieving safety and efficiency in intelligent transportation systems (ITS). One important requirement of safety applications is that vehicles are able to communicate with neighboring vehicles, with very low latency and packet loss. The high mobility, unreliable channel quality and high message rates make this a challenging problem for VANETs. There have been significant research activities in recent years in the development of congestion control algorithms that ensure reliable delivery of safety messages in vehicle-to-vehicle (V2V) communication. In this paper, we present a comprehensive survey of congestion control approaches for VANET. We identify the relevant parameters and performance metrics that can be used to evaluate these approaches and analyze each approach based a number of factors such as the type of traffic, whether it is proactive or reactive, and the mechanism for controlling congestion. We conclude this paper with some additional considerations for designing V2V communication protocols and interesting and open research problems and directions for future work.
Vehicular ad hoc networks (VANETs) are crucial components of intelligent transportation systems (ITS) aimed at enhancing road safety and providing additional services to vehicles and their users. To achieve reliable delivery of periodic status information, referred to as basic safety messages (BSMs) and event-driven alerts, vehicles need to manage the conflicting requirements of situational awareness and congestion control in a dynamic environment. To address this challenge, this paper focuses on controlling the message transmission rate through a Markov decision process (MDP) and solves it using a novel reinforcement learning (RL) algorithm. The proposed RL approach selects the most suitable transmission rate based on the current channel conditions, resulting in a balanced performance in terms of packet delivery and channel congestion, as shown by simulation results for different traffic scenarios. Additionally, the proposed approach offers increased flexibility for adaptive congestion control through the design of an appropriate reward function.
Vehicular ad Hoc networks (VANETs) support a variety of applications ranging from critical safety applications to “infotainment” or “comfort” applications. In North America, 75 MHz of the spectrum in the 5.9 GHz band has been allocated for vehicular communication. Safety applications rely on event-driven “alert” messages as well as the periodic broadcast of Basic Safety Messages (BSMs) containing critical information, e.g., position, speed, and heading from participating vehicles. The limited channel capacity and high message rates needed to ensure an adequate level of awareness make the reliable delivery of BSMs a challenging problem for VANETs. In this paper, we propose a decentralized congestion control algorithm that uses variable transmission power levels to reduce the channel busy ratio while maintaining a high level of awareness for nearby vehicles. The simulation results indicate that the proposed approach is able to achieve a suitable balance between awareness and bandwidth usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.