Optimal weights are usually obtained in neural network through a fixed network conformation, which affects the practicality of the network. Aiming at the shortage of conformation design and weight training algorithm in neural network application, the back propagation (BP) neural network learning algorithm combined with simulated annealing genetic algorithm (SAGA) is put forward. The multi-point genetic optimization of neural network topology and network weights is performed using hierarchical coding schemes and genetic operations. The simulated annealing mechanism is incorporated into the Genetic Algorithm (GA) to optimize the design and optimization of neural network conformation and network weights simultaneously. The SAGA takes advantage of GA excellent ability in grasping the overall ability of the search process, also uses the SA algorithm to control the convergence of the algorithm to avoid premature phenomenon. The fault diagnosis of one certain on-board electrical control box of helicopter and one certain flight control box of aircraft autopilot were used as a test platform to simulate the algorithm. The simulation conclusions reveal that the algorithm has good convergence rate and high diagnostic accurateness.
Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR) and fault isolation rate (FIR). From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO) algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.