Autonomous decision-making for ships to avoid collision is core to the autonomous navigation of intelligent ships. In recent years, related research has shown explosive growth. However, owing to the complex constraints of navigation environments, the Convention of the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs), and the underactuated characteristics of ships, it is extremely challenging to design a decision-making algorithm for autonomous collision avoidance (CA) that is practically useful. Based on the investigation of many studies, current decision-making algorithms can be attributed to three strategies: alteration of course alone, alteration of speed alone, and alteration of both course and speed. This study discusses the implementation methods of each strategy in detail and compares the specific ways, applicable scenes, and limiting conditions of these methods to achieve alteration of course and/or speed to avoid collision, especially their advantages and disadvantages. Additionally, this study quantitatively analyzes the coupling mechanisms of alterations of course and speed for autonomous CA decision-making under different encounter situations, supplementing and optimizing the decision-making theory for ship autonomous CA. Finally, several feasible algorithms and improvement schemes for autonomous CA decision-making, combined with course and speed alterations, are discussed.
The ship wave is of great interest for wave drag and coastal erosion. This paper proposes a mechanism of ship wave transformation to explore the effects of ship speed and ship size on the waveform. Firstly, based on the theory of potential flow, the boundary integral equations for the Kelvin ship waves are obtained by deploying the different Kelvin sources or Rankine sources. Then, these integral equations are numerically discretized to a set of nonlinear equations. Finally, the Jacobian−free Newton–Krylov method with a preconditioner is adopted to solve the nonlinear equations. Though imitating plenty of different Kelvin wave patterns, the mechanism of ship wave transformation is proposed to conveniently generate the polymorphic Kelvin wake patterns. The above numerical simulation scheme is verified by comparing simulation results with real ship waves. After that, the wake angle is discussed with the effects of Froude number, source strength and source type by following the mechanism of ship wave transformation. The results show that the wake angle tends to decrease with ship speed but increase with ship size. In addition, for high ship speeds, the effect on the wake angle can be more dramatic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.