BackgroundGasdermin D (GSDMD) is well known as a downstream of inflammasomes. However, the roles of GSDMD itself in hepatocellular carcinoma (HCC) remain unclear.MethodsTwo independent cohorts of patients with HCC were analyzed to evaluate the pathological relevance of GSDMD/pTBK1/PD-L1. GSDMD knockout (GSDMD-/-) mice, Alb-Cre mice administered with an adeno-associated virus (AAV) vector that expressed the gasdermin-N domain (AAV9-FLEX-GSDMD-N) and their wild-type littermates were used to induce hepatocarcinogenesis or metastatic HCC. Combination of anti-programmed cell death protein-1 (PD-1) and GSDMD inhibitor dimethyl fumarate (DMF) was used to test for improved therapeutic efficacy. RNA sequencing was used to explore the mechanisms how GSDMD promoted HCC progression.ResultsThe expression of GSDMD and GSDMD-N was upregulated in HCC tissues or metastatic HCC tissues and positive GSDMD expression indicated grim prognosis. Diethylnitrosamine/carbon tetrachloride or thioacetamide-treated GSDMD-/- mice exhibited decreased liver tumors. In contrast, AAV9-FLEX-GSDMD-N promoted hepatocarcinogenesis. RNA sequencing manifested that knockout of GSDMD impacted the cyclic GMP-AMP synthase (cGAS) pathway and immune-associated pathway. GSDMD damped cGAS activation by promoting autophagy via outputting potassium (K+) and promoted programmed death ligand-1 (PD-L1) expression by histone deacetylases/signal transducer and activator of transcription 1 (STAT1)-induced transactivation of PD-L1 via importing calcium (Ca2+). High Mobility Group Box 1/toll-like receptor 4 (TLR4)/caspase-1 pathway contributed to the overexpression and cleavage of GSDMD. Anti-PD-1 combining with DMF largely impaired HCC progression and metastasis.ConclusionsTargeting GSDMD could promote expression of interferons through inactivation of cGAS pathway and downregulated the PD-L1 expression. Therefore, combined anti-PD-1 and GSDMD inhibitor might serve as an effective treatment option for patients with HCC with GSDMD upregulation.
Background Mitochondria play central roles in metabolic diseases including nonalcoholic steatohepatitis (NASH). However, how mitochondria regulate NASH progression remains largely unknown. Our previous findings demonstrate that mitochondrial general control of amino acid synthesis 5 like 1 (GCN5L1) is associated with mitochondrial metabolism. Nevertheless, the roles of GCN5L1 in NASH are unclear. Aims and methods The GCN5L1 expression was detected in the fatty livers of NASH patients and animals. Hepatocyte‐specific GCN5L1 deficiency or overexpression mice were used to induce NASH models by feeding with a high‐fat/high‐cholesterol or methionine‐choline deficient diet. The molecular mechanisms underlying GCN5L1‐regulated NASH were further explored and verified in mice. Results and conclusions GCN5L1 expression was increased in NASH patients. Upregulated GCN5L1 level was also illustrated in NASH mice. Mice with hepatocyte‐specific GCN5L1 conditional knockout improved the inflammatory response compared to GCN5L1flox/flox mice. However, overexpression of mitochondrial GCN5L1 augmented the inflammatory response. Mechanically, GCN5L1 acetylated CypD and enhanced its binding with ATP5B, which induced the opening of mitochondrial permeability transition pores and the release of mitochondrial ROS into the cytoplasm. The increased ROS promoted ferroptosis of hepatocytes and induced accumulation of high mobility group box 1 in the microenvironment, which recruited neutrophils and induced the generation of neutrophil extracellular traps (NETs). NETs block impaired GCN5L1‐induced NASH progression. Furthermore, the upregulation of GCN5L1 in NASH was contributed by lipid overload‐induced endoplasmic reticulum stress. Together, mitochondrial GCN5L1 has a vital function in promoting NASH progression by regulating oxidative metabolism and the hepatic inflammatory microenvironment. Thus, GCN5L1 might be a potential intervention target in NASH treatment.
Background: As a component of nucleosomes, histone H3 plays an important role in chromosome structure and gene expression. Current studies have mostly focused on the role of histones in epigenetics, but in addition to this, the role of histones themselves in tumor development and microenvironment have been less explored. Methods: Western blot and immunofluorescence were carried out to detect the content and localization of histone H3 in hepatocellular carcinoma. The changes of histone H3 were observed in hypoxia treatment cells, the specific action mechanism of histone H3 was studied by CoIP and other methods. Cell Counting Kit-8 assay, plate cloning assay and transwell assay were used to exam the effect of histone H3 on cell proliferation and metastasis, which were verified by subcutaneous tumors in mice and lung metastasis by tail vein injection in mice. Results: We found that histone H3 was overexpressed in hepatocellular carcinoma tumor tissues compared to adjacent non-tumor tissues, and there was concomitant translocation of histone H3 from the nucleus to the cytoplasm. We found that hypoxia could contribute to this phenomenon of histone H3 translocation from the nucleus to the cytoplasm in hepatocellular carcinoma cells and increased binding levels to TLR9. At the same time, hypoxia induced downstream activation of TLR9 and caspase-1, as well as cleavage and release of the pro-inflammatory cytokines IL-1β and IL-18. We further demonstrated that histone H3 could also promote proliferation and metastasis of hepatocellular carcinoma through TLR9 activation of NLRP3 inflammasome. In addition, overexpression of histone H3 was also confirmed to promote hepatocellular carcinoma proliferation and metastasis in mouse models of hepatocellular carcinoma growth assay and lung metastasis. Conclusions: In hypoxic hepatocellular carcinoma cells, histone H3 can translocate to the cytoplasm and activate caspase-1 via TLR9, thereby producing pro-inflammatory cytokines that promote tumor proliferation and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.