As the number of civil aerial vehicles increase explosively, spectrum scarcity and security become an increasingly challenge in both the airspace and terrestrial space. To address this difficulty, this paper presents an unmanned aerial vehicle-assisted (UAV-assisted) spectrum mapping system and a spectrum data reconstruction algorithm driven by spectrum data and channel model are proposed. The reconstruction algorithm, which includes a model-driven spectrum data inference method and a spectrum data completion method with uniformity decision mechanism, can reconstruct limited and incomplete spectrum data to a three-dimensional (3D) spectrum map. As a result, spectrum scarcity and security can be achieved. Spectrum mapping is a symmetry-based digital twin technology. By employing an uniformity decision mechanism, the proposed completion method can effectively interpolate spatial data even when the collected data are unevenly distributed. The effectiveness of the proposed mapping scheme is evaluated by comparing its results with the ray-tracing simulated data of the campus scenario. Simulation results show that the proposed reconstruction algorithm outperforms the classical inverse distance weighted (IDW) interpolation method and the tensor completion method by about 12.5% and 92.3%, respectively, in terms of reconstruction accuracy when the collected spectrum data are regularly missing, unevenly distributed and limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.