Although many tools have been developed to analyze small RNA sequencing (sRNA-Seq) data, it remains challenging to accurately analyze the small RNA population, mainly due to multiple sequence ID assignment caused by short read length. Additional issues in small RNA analysis include low consistency of microRNA (miRNA) measurement results across different platforms, miRNA mapping associated with miRNA sequence variation (isomiR) and RNA editing, and the origin of those unmapped reads after screening against all endogenous reference sequence databases. To address these issues, we built a comprehensive and customizable sRNA-Seq data analysis pipeline—sRNAnalyzer, which enables: (i) comprehensive miRNA profiling strategies to better handle isomiRs and summarization based on each nucleotide position to detect potential SNPs in miRNAs, (ii) different sequence mapping result assignment approaches to simulate results from microarray/qRT-PCR platforms and a local probabilistic model to assign mapping results to the most-likely IDs, (iii) comprehensive ribosomal RNA filtering for accurate mapping of exogenous RNAs and summarization based on taxonomy annotation. We evaluated our pipeline on both artificial samples (including synthetic miRNA and Escherichia coli cultures) and biological samples (human tissue and plasma). sRNAnalyzer is implemented in Perl and available at: http://srnanalyzer.systemsbiology.net/.
BackgroundStudies of toxicity and unintended side effects can lead to improved drug safety and efficacy. One promising form of study comes from molecular systems biology in the form of "systems pharmacology". Systems pharmacology combines data from clinical observation and molecular biology. This approach is new, however, and there are few examples of how it can practically predict adverse reactions (ADRs) from an experimental drug with acceptable accuracy.ResultsWe have developed a new and practical computational framework to accurately predict ADRs of trial drugs. We combine clinical observation data with drug target data, protein-protein interaction (PPI) networks, and gene ontology (GO) annotations. We use cardiotoxicity, one of the major causes for drug withdrawals, as a case study to demonstrate the power of the framework. Our results show that an in silico model built on this framework can achieve a satisfactory cardiotoxicity ADR prediction performance (median AUC = 0.771, Accuracy = 0.675, Sensitivity = 0.632, and Specificity = 0.789). Our results also demonstrate the significance of incorporating prior knowledge, including gene networks and gene annotations, to improve future ADR assessments.ConclusionsBiomolecular network and gene annotation information can significantly improve the predictive accuracy of ADR of drugs under development. The use of PPI networks can increase prediction specificity and the use of GO annotations can increase prediction sensitivity. Using cardiotoxicity as an example, we are able to further identify cardiotoxicity-related proteins among drug target expanding PPI networks. The systems pharmacology approach that we developed in this study can be generally applicable to all future developmental drug ADR assessments and predictions.
Preterm birth (PTB) can lead to lifelong complications and challenges. Identifying and monitoring molecular signals in easily accessible biological samples that can diagnose or predict the risk of preterm labour (PTL) in pregnant women will reduce or prevent PTBs. A number of studies identified putative biomarkers for PTL including protein, miRNA and hormones from various body fluids. However, biomarkers identified from these studies usually lack consistency and reproducibility. Extracellular vesicles (EVs) in circulation have gained significant interest in recent years as these vesicles may be involved in cell‐cell communication. We have used an improved small RNA library construction protocol and a newly developed size exclusion chromatography (SEC)‐based EV purification method to gain a comprehensive view of circulating RNA in plasma and its distribution by analysing RNAs in whole plasma and EV‐associated and EV‐depleted plasma. We identified a number of miRNAs in EVs that can be used as biomarkers for PTL, and these miRNAs may reflect the pathological changes of the placenta during the development of PTL. To our knowledge, this is the first study to report a comprehensive picture of circulating RNA, including RNA in whole plasma, EV and EV‐depleted plasma, in PTL and reveal the usefulness of EV‐associated RNAs in disease diagnosis.
Proteomics is inherently a systems science that studies not only measured protein and their expressions in a cell, but also the interplay of proteins, protein complexes, signaling pathways, and network modules. There is a rapid accumulation of Proteomics data in recent years. However, Proteomics data are highly variable, with results being sensitive to data preparation methods, sample condition, instrument types, and analytical method. To address this challenge in Proteomics data analysis, we review common approaches developed to incorporate biological function and network topological information. We categorize existing tools into four categories: tools with basic functional information and little topological features (e.g., GO category analysis), tools with rich functional information and little topological features (e.g., GSEA), tools with basic functional information and rich topological features (e.g., Cytoscape), and tools with rich functional information and rich topological features (e.g., PathwayExpress). We review the general application potential of these tools to Proteomics. In addition, we also review tools that can achieve automated learning of pathway modules and features, and tools that help perform integrated network visual analytics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.