Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a CH-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of HO degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.
SUMMARYWe show that OsSERK2 is a regulator of innate immune signaling mediated by multiple non-RD receptor kinases (RKs) including XA21, XA3, and OsFLS2. OsSerk2-silenced rice lines are impaired in XA21-mediated immunity to Xoo PXO99, XA3-mediated immunity to Xoo PXO86, and OsFLS2-mediated defense responses. Thus, OsSERK2 is broadly involved in PRR-mediated immunity in rice.
SignificanceCrops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease. Despite their importance, few broad-spectrum resistance loci have been reported, and the underlying mechanisms controlling the trait remain largely unknown. This report describes the identification of a gene, called “bsr-k1,” conferring broad-spectrum resistance and demonstrates that the encoded protein regulates immunity-related genes. Loss of function of BSR-K1 in rice leads to enhanced broad-spectrum resistance to two serious rice diseases with no major penalty on yield. This report provides insights into broad-spectrum resistance and offers an efficient strategy to breeding durably resistant rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.