This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Blasting vibration is harmful to the nearby habitants and dwellings in diverse geotechnical engineering. In this paper, a novel scheme based on Artificial Neural Network (ANN) method optimized by dimensionality reduction of Factor Analysis and Mean Impact Value (FA-MIV) is proposed to predict peak particle velocity (PPV) of blasting vibration. To construct the model, nine parameters of field measurement are taken as undetermined input parameters for research, while peak particle velocity (PPV) is considered as output parameter. With the application of FA, common factors are extracted from undetermined input parameters. Then, principal components are defined as a linear combination of common factors. The weight of each principal components effected on output parameter is ranked according to the calculation of MIV, and two principal components with minimum weight are eliminated. Ultimately, output parameter (PPV) is explained in a low-dimensional space with four input characteristic parameters. In the prepared database consisting of 108 datasets, 98 datasets are used for the training of the model, while the rest are used for testing performance. The performances of the ANN models are compared with regression analysis, in terms of coefficient of determination (R2) and mean absolute error (MAE). It is found that the performances of ANN models with using FA-MIV are superior to those of models without using FA-MIV in the prediction of PPV. In addition, the abilities of ANN models are all superior to regression analysis in the prediction of PPV. The result obtained from ELM is more accurate than BPNN and MVRA models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.