This paper reviews quantum spin squeezing, which characterizes the sensitivity of a state with respect to an SU(2) rotation, and is significant for both entanglement detection and high-precision metrology. We first present various definitions of spin squeezing parameters, explain their origin and properties for typical states, and then discuss spin-squeezed states produced with the Ising and the nonlinear twisting Hamiltonians. Afterwards, we explain correlations and entanglement in spin-squeezed states, as well as the relations between spin squeezing and quantum Fisher information, where the latter plays a central role in quantum metrology. We also review the applications of spin squeezing for detecting quantum chaos and quantum phase transitions, as well as the influence of decoherence on spin-squeezed states. Finally, several experiments are discussed including: producing spin squeezed states via particle collisions in Bose-Einstein condensates, mapping photon squeezing onto atomic ensembles, and quantum non-demolition measurements.Comment: 99 pages, 25 figure
We study the entanglement in the quantum Heisenberg XY model in which the so-called W entangled states can be generated for 3 or 4 qubits. By the concept of concurrence, we study the entanglement in the time evolution of the XY model. We investigate the thermal entanglement in the two-qubit isotropic XY model with a magnetic field and in the anisotropic XY model, and find that the thermal entanglement exists for both ferromagnetic and antiferromagnetic cases. Some evidences of the quantum phase transition also appear in these simple models.
Quantum Fisher information matrix (QFIM) is a core concept in theoretical quantum metrology due to the significant importance of quantum Cramér–Rao bound in quantum parameter estimation. However, studies in recent years have revealed wide connections between QFIM and other aspects of quantum mechanics, including quantum thermodynamics, quantum phase transition, entanglement witness, quantum speed limit and non-Markovianity. These connections indicate that QFIM is more than a concept in quantum metrology, but rather a fundamental quantity in quantum mechanics. In this paper, we summarize the properties and existing calculation techniques of QFIM for various cases, and review the development of QFIM in some aspects of quantum mechanics apart from quantum metrology. On the other hand, as the main application of QFIM, the second part of this paper reviews the quantum multiparameter Cramér–Rao bound, its attainability condition and the associated optimal measurements. Moreover, recent developments in a few typical scenarios of quantum multiparameter estimation and the quantum advantages are also thoroughly discussed in this part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.