Multisensory integration helps the brain build reliable models of the world and resolve ambiguities. Visual interactions with sound and touch are well established but vestibular influences on vision are less well studied. Here, we test the vestibular influence on vision using horizontally opposed motions presented one to each eye so that visual perception is unstable and alternates irregularly. Passive, whole-body rotations in the yaw plane stabilized visual alternations, with perceived direction oscillating congruently with rotation (leftward motion during leftward rotation, and vice versa). This demonstrates a purely vestibular signal can resolve ambiguous visual motion and determine visual perception. Active self-rotation following the same sinusoidal profile also entrained vision to the rotation cycle -more strongly and with a lesser time lag, likely because of efference copy and predictive internal models. Both experiments show that visual ambiguity provides an effective paradigm to reveal how vestibular and motor inputs can shape visual perception.
Work on dynamic topology optimization of engineering structures for vibration suppression has mainly addressed the maximization of eigenfrequencies and gaps between consecutive eigenfrequencies of free vibration, minimization of the dynamic compliance subject to forced vibration, and minimization of the structural frequency response. A dynamic topology optimization method of bi-material plate structures is presented based on power flow analysis. Topology optimization problems formulated directly with the design objective of minimizing the power flow response are dealt with. In comparison to the displacement or velocity response, the power flow response takes not only the amplitude of force and velocity into account, but also the phase relationship of the two vector quantities. The complex expression of power flow response is derived based on time-harmonic external mechanical loading and Rayleigh damping. The mathematical formulation of topology optimization is established based on power flow response and bi-material solid isotropic material with penalization(SIMP) model. Computational optimization procedure is developed by using adjoint design sensitivity analysis and the method of moving asymptotes(MMA). Several numerical examples are presented for bi-material plate structures with different loading frequencies, which verify the feasibility and effectiveness of this method. Additionally, optimum results between topological design of minimum power flow response and minimum dynamic compliance are compared, showing that the present method has strong adaptability for structural dynamic topology optimization problems. The proposed research provides a more accurate and effective approach for dynamic topology optimization of vibrating structures.
PELE projectile is a new type of armor-piercing warhead and has a more obvious fragmentation effect, which solves the problem of insufficient after-effects of conventional armor-piercing projectiles. Reactive material is a new type of energetic material, which has some characteristics similar to the traditional explosives but has better mechanical properties. Reactive material is insensitive under normal conditions, and it can release huge energy under external impact loading. This paper hopes to study the application of reactive materials to the inner core of PELE projectiles to further improve the fragmentation effect of PELE projectiles. The fragmentation effect of PELE projectile is mainly reflected in the radial scattering velocity of fragments after it perforates the target plate. In this paper, three energy sources for the radial scattering of fragments were obtained by analyzing the penetration process of PELE projectile, that is, the axial kinetic energy of outer casing, the radial compression potential energy generated by the inner core to the outer casing, and the chemical energy released by the reactive core material. Based on the simplification and assumptions, the theoretical model of radial scattering velocity of fragments of the reactive core PELE projectile was established. In addition, numerical simulations were carried out to verify the theoretical model. The results show that the numerical simulation results are in good agreement with the theoretical calculation results, which indicates that the model established in this paper is scientific and reasonable. The reactive core PELE projectile has a more significant fragmentation effect, which further enhances the comprehensive damage power of traditional PELE projectile. The theoretical model established in this paper can quickly assess the power of reactive core PELE projectile’s fragmentation effect, which can be used to provide guidance and reference for engineering application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.